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Apicomplexan parasites cause diseases of medical and

agricultural importance linked to dramatic changes they impart

upon infected host cells. Following invasion, the malaria parasite

Plasmodium falciparum renovates the host erythrocyte using

mechanisms previously believed to be malaria-specific. This

involves proteolytic cleavage of effectors in the endoplasmic

reticulum that licences proteins for translocation into the host cell.

Recently, it was demonstrated that the related parasite

Toxoplasma gondii, responsible for disease in

immunocompromised individuals and congenital birth defects,

has an analogous pathway with some differences, including

proteolytic processing in the Golgi. Here we review the similarities

and distinctions in export mechanisms between these and other

Apicomplexan parasites to reconcile how this group of

pathogens modify their host cells to survive and proliferate.
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Introduction
Apicomplexans are a group of obligate intracellular parasites

including species of medical and agricultural significance.

Plasmodium parasites cause malaria which is responsible for

considerable morbidity and �438 000 deaths in 2015 [1].

Toxoplasma gondii is one of the most ubiquitous human

pathogens and causes severe disease in immunocompro-

mised individuals and pregnant women and is a leading

cause of blindness in some countries [2,3].

One of the key pathogenic mechanisms of Apicomplexan

parasites is their ability to modify host cells for their own
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advantage. Plasmodium falciparum imparts dramatic

changes onto its infected erythrocyte, renovating this

inert cell into one capable of supporting growth of a

nutrient-hungry parasite, whilst also mediating cytoad-

herence to evade immune defences [4]. Conversely,

Toxoplasma infects almost any nucleated cell and recruits

host endoplasmic reticulum (ER) [5] and mitochondria

[6] to the vacuolar membrane whilst completely re-wiring

the transcriptional output of its host cell [7]. This alters

cytokine and chemokine production, preventing apopto-

sis [8], and causes the up-regulation of genes involved in

energy metabolism and down-regulation of MHCII ex-

pression in antigen presenting cells [9]. In both parasite

species, these processes are geared towards promoting

survival and replication in the host for successful trans-

mission.

Over the past 15 years, research into host cell modifica-

tions and mechanisms of protein export in P. falciparum
and Toxoplasma has taken different trajectories. P. falci-
parum exports proteins into the infected erythrocyte after

invasion [10,11] whereby exported proteins are licensed

through a proteolytic maturation step [12–15] followed by

transport across the parasitophorous vacuole membrane

(PVM) into the erythrocyte [16,17��,18��]. The major

virulence factors in Toxoplasma, however, were shown

to take a different export route. They are transported to

the rhoptries, which are club-shaped apical organelles

that store proteins involved in invasion, and are secreted

into the host cell during parasite entry [7,19–21]. Thus,

the dogma was established that P. falciparum and Toxo-
plasma used vastly different mechanisms for delivering

effectors into host cells.

In this review we will compare and contrast recent

advances in knowledge of different protein export path-

ways in Apicomplexans, as the mechanisms appear more

conserved than previously thought. We will explore why

there is a need for multiple pathways and discuss the role

of cargo maturation in the ER or Golgi and what implica-

tions this has on protein trafficking mechanisms across the

phylum.

Many paths to the same destination
To begin their replicative cycle, Apicomplexan parasites

must invade a host cell. This is achieved using a con-

served mechanism of invasion that is initiated by sequen-

tial secretion of apical organelles [22]. First the
www.sciencedirect.com
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micronemes (organelles whose contents are involved in

parasite attachment to, and egress from, the host cell)

release adhesins onto the parasite surface, anchoring

ligands for intimate host cell attachment (Figure 1). This

is followed by rhoptry release, delivering proteins and

lipids into the host cell to form the PVM, a barrier that

separates the parasite from host cell cytoplasm (Figure 1).

Upon completion of invasion, exocytosis of dense gran-

ules (DG) delivers proteins into the nascent vacuole and

some of these are exported into the host cell (Figure 1).

In P. falciparum, the major pathway for export of over

350 proteins [10,11] occurs immediately after invasion

[23] and continues for 20–30 hours post-infection in asex-

ual parasites and for the first 2–4 days of gametocytogen-

esis [24]. Export uses a two-step mechanism where an

N-terminal signal peptide (SP) directs entry into the ER,

followed by recognition and cleavage of a pentameric

amino acid sequence called the Plasmodium export ele-

ment (PEXEL) [10,11], usually located 15–30 amino

acids from the SP [25,26,27��]. PEXEL processing

is performed by the ER membrane-resident aspartyl
Figure 1
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protease Plasmepsin V (PMV) [14,15] (Figure 2a). Pro-

cessing reveals a new N-terminus that is acetylated in the

parasite ER, an unusual location for this post-translational

modification [12,13], which contains additional unknown

information that is important for export [13,28,29]. The

steps immediately after cleavage are unknown but PMV

contains a unique structural motif that may form part of an

ER complex facilitating cargo selection [30��]. An alter-

nate mechanism has been proposed where the PEXEL

binds phosphatidylinositol-3-phosphate (PI(3)P) in the

ER, which is an unprecedented location for this lipid,

independent of PMV activity [31]. However, subsequent

studies have failed to confirm PI(3)P in the Plasmodium
ER or detect PEXEL-lipid binding [27��]. Exported

cargo traffic through the Golgi [32] and out of the parasite,

where they are unfolded [33] and translocated across the

PVM through the Plasmodium translocon of exported

proteins (PTEX) (Figure 2a) [16,17��,18��].

By contrast, the first identified Toxoplasma effectors are

delivered to the host cell during invasion (Figure 1b).
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Role of the ER and Golgi in protein export. (a) Export in Plasmodium. Left: Model of the PEXEL pathway. (Apicomplexan parasites cause diseases

of medical and agricultural importance. Their success is directly linked to changes imparted upon infected cells.) Proteins containing a signal

peptide are co-translationally inserted into the ER through the Sec61 translocon. Proteins containing a canonical or relaxed PEXEL (RxLx(x)E) are

co-translationally cleaved by Plasmepsin V (RxL#) at the ER membrane, revealing a new N-terminus, which is acetylated (Ac-x(x)E-protein), and

potentially functions in complex with one or more cargo receptors. These proteins are packaged into COPII vesicles and transit through the Golgi.

In developing merozoites, Ac-xxE-proteins are packaged into dense granules for discharge during re-invasion. Ac-xE/Q/D proteins are released by

vesicle fusion at the parasite membrane (PM) into the parasitophorous vacuole (PV). At the parasitophorous vacuole membrane (PVM) these

proteins are unfolded and funnelled through the Plasmodium translocon of exported proteins (PTEX) and delivered into the erythrocyte. Right:

Model for PNEP export. A representative PNEP is synthesized and anchored in the ER membrane by a transmembrane domain or signal peptide.

The protein diffuses to ER exit sites and buds of with COPII vesicles to the Golgi and is delivered to the PM where it is either removed or

translocated through a PM translocon into the PV and then exported through PTEX. (b) Export and trafficking via the Toxoplasma Golgi. Left:

Model of the TEXEL pathway. Proteins containing a signal peptide are co-translationally inserted into the ER through the Sec61 translocon.

Following signal peptidase-cleavage of the signal peptide, proteins are packaged into COPII vesicles and trafficked to the Golgi. The TEXEL

(RRLxx) is cleaved by aspartyl protease 5 (ASP5) (RxL#), revealing a new N-terminus (it is unknown whether N-acetylation occurs). Cargo selection

occurs in the Golgi and via one or more receptors, before delivery to dense granules. Dense granule contents are released at the PM into the PV.

Translocation into the host cell occurs by unknown mechanisms, possibly through a Toxoplasma-specific translocon (Plasmodium-like translocon),

of which MYR1 may be a component. Other cleaved TEXEL proteins (e.g. GRA19) reside in the PV, and TEXEL cleavage is important for efficient

PVM localization. Right: Model of TNEP export. A representative TNEP (GRA24) is co-translationally cleaved by SP inside the ER lumen as it

passes through Sec61 and is packaged into COPII vesicles for delivery to the Golgi. Following Golgi transit and transport to dense granules, the

protein is released into the PV and translocated into the host cell via unknown mechanisms, potentially through the same pathway as exported

TEXEL proteins.
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ROP16 and ROP18 through the ER and Golgi to the

rhoptry organelles, where they accumulate in readiness

for reinvasion [7,19,20]. Rhoptries are secreted during

invasion, establishing the dogma that Toxoplasma only

exports proteins at this time, thereby differing substan-

tially from P. falciparum.

This recently changed after the discovery of the DG

protein GRA16, which is constitutively exported through-

out intracellular parasite development, and accumulates in

the host nucleus [34] (Figure 1b). This protein possesses an

N-terminal PEXEL-like motif that is cleaved by the Golgi

membrane-resident Aspartyl Protease 5 (ASP5) in an ortho-

logous manner to PMV cleavage of the PEXEL in the

Plasmodium ER (Figure 2b) [35��,36��,37��]. This motif was

therefore named the Toxoplasma export element (TEXEL)

[37��]. Trafficking via the dense granules in Toxoplasma is

the default secretory pathway, and a considerable number

of DG proteins have now been identified [38], with many

containing a TEXEL motif [35��,36��,37��,39�,40]. Inter-

estingly, unlike in Plasmodium, the location of the TEXEL

is not always physically constrained to the N-terminus

[37��,39�] but whether these particular TEXEL proteins

are exported, and which fragment, is yet to be determined.

In Plasmodium spp., DGs are synthesized only in mero-

zoites (the invasive form of the malaria parasite that

invades erythrocytes) and are not regenerated following

invasion [22]. However, developing merozoites do produce

and store proteins in these organelles for export following

invasion (Figure 2a). These include ring-expressed surface

antigen (RESA) [41,42] and approximately 12 other DnaJ-

like and PHIST family proteins, which all contain a ‘re-

laxed’ PEXEL motif (RxLxxE/Q/D) [25,43]. The relaxed

PEXEL is cleaved by PMV in the ER and is necessary for

export [43] perhaps by targeting the mature proteins to

DGs (Figure 2a). Proteins stored in DGs also include

PTEX components [16] and they are released into the

vacuole immediately post invasion [16,23] (Figure 1a).

RESA is translocated within minutes after invasion [23],

demonstrating the DG export pathway is dedicated to the

earliest stages of cellular remodelling.

Another class of Plasmodium proteins are exported even

earlier than those in DGs. Like the ROP proteins in

Toxoplasma, it has become clear that P. falciparum exports

proteins from rhoptries. The cytoadherence-linked asex-

ual gene (CLAG) family (also called RopH) [44] are

delivered to the erythrocyte surface and modify mem-

brane permeability for the parasite’s benefit [45]. The

export of CLAG3 was recently shown to be PTEX-

independent [18��], demonstrating that this protein likely

enters the host cell directly after rhoptry discharge into

the host membrane or cytosol (Figure 1a) [46].

A further subset of exported proteins exists in Plasmodium,

recently also identified in Toxoplasma, whereby proteins
www.sciencedirect.com 
lacking a PEXEL/TEXEL or a rhoptry-targeting signal

[47] possess a hydrophobic stretch (a SP or transmembrane

domain) as well as various non-conserved export signals

[48–52] that target them through PTEX [17��,18��,28].

These are called PEXEL-negative exported proteins

(PNEPs) in Plasmodium [48], and we shall refer to them

as TEXEL-negative exported proteins (TNEPs) in Toxo-
plasma. They include the dense granule protein GRA24 in

Toxoplasma [52] and skeleton binding protein 1 [53] and

Erythrocyte Membrane Protein 1 (PfEMP1) in P. falci-
parum [54,55]. Although PMV and ASP5 do not cleave

PNEPs and TNEPs, respectively [37��,43], export of these

proteins can be dependent on substrates of these enzymes.

This is the case for the virulence adhesin PfEMP1, which is

not cleaved by PMV [43] but requires multiple PEXEL-

containing proteins for transport across the PVM and

erythrocyte membrane [56,57] and for cytoadherence

[58,59��]. In Toxoplasma, trafficking of the TNEP,

GRA24 [52], is ASP5-dependent [35��,36��,37��]. This also

appears to be an indirect effect, where ASP5 matures

another protein(s) required for its transport [37��]. One

protein is MYR1 (MYc-Regulation 1), recently identified

by its role in host c-Myc induction and which is also

required for GRA24 export, suggesting it may be a trans-

locon component [60��]. Interestingly, MYR1 localizes to

the PVM and may not be exported [60��], but it possesses a

TEXEL motif almost two-thirds along its sequence that is

cleaved by ASP5 [37��]. The identification of MYR1 high-

lights a potential mechanism linking export of TNEPs

with ASP5. However, MYR1 also illustrates a fundamental

difference between Toxoplasma and Plasmodium, in that

TEXEL proteins can be localized at the PVM [37��], which

so far has not been the case for Plasmodium PEXEL

proteins. PVM-targeting was also reported for other

TEXEL-containing proteins [40].

Beyond Toxoplasma and Plasmodium spp., less is under-

stood about protein export in other Apicomplexan spe-

cies. Recently, it was reported that homologues of PMV

are present in other Apicomplexa, plant pathogens and

plants [30��]. A PEXEL-like motif (PLM) has also been

described in Babesia bovis (Rx(x)L) [39�], which is dis-

tantly related to Plasmodium and infects bovine erythro-

cytes, causing agricultural loss. Interestingly, B. bovis
degrades the PVM soon after invasion [61] so export does

not require translocation across this membrane. Indeed, a

number of B. bovis proteins containing a signal sequence

but lacking a PLM are exported [62]. However, proces-

sing of the PLM appears necessary for optimal targeting

to ‘spherical bodies’ before export, which could ensure

regulated release [39�]. A PLM has also been reported for

Cryptosporidium [39�], though it requires functional char-

acterization. Thus, maturation of the PEXEL is not

malaria-specific as previously thought, but is a conserved

step in Apicomplexan protein trafficking and export.

Inhibitors of PMV [30��,59��,63,64�] and ASP5 [37��]
have now been developed and it will be interesting to
Current Opinion in Cell Biology 2016, 41:18–24
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see whether blocking these enzymes can be an antipara-

sitic strategy in future.

Overall, these findings demonstrate that Apicomplexans

have many export pathways. The question of why is not

yet clear but timing is obviously a factor, since distinct

pathways are active at different times. Other reasons

could include different protein sizes, solubility, folding,

expression levels and final topology. And so, faced with

the problem of exporting a complex variety of different

effectors at different times, Apicomplexans have evolved

diverse pathways as a solution.

Similar decisions at different locations?
The function of proteolytic cleavage in the ER and Golgi

for export by Apicomplexans is likely the exposure of a

signal located in the new N-terminus that directs the next

step in trafficking. The fact that the aspartyl proteases

involved are located in different organelles, combined with

the differences in the positional constraints of their cleav-

age sites, raises some interesting possibilities. Currently,

the main hypothesis in P. falciparum is that PEXEL

cleavage by PMV licences export by directing proteins

from the secretory pathway into a distinct export pathway

[14,15]. Fascinatingly, PMV cleavage of the PEXEL

occurs very rapidly, likely during co-translational ER entry

[27��,59��] making the decision very early. Shifting the

PEXEL in knob-associated histidine rich protein

(KAHRP) from its conserved position towards the

N-terminal SP blocked cleavage by PMV and export,

and the protein was instead cleaved by signal peptidase

and secreted to the PV [27��]. This suggests that the

PEXEL position is conserved for important reasons that

are linked with processing and cargo selection in the early

secretory pathway [27��]. Conversely, cleavage by ASP5 is

spatially separated from ER import, as it occurs in the

Golgi, and the TEXEL is not positionally constrained in

Toxoplasma [35��,36��,37��,39�]. Is the position of the

cleavage site therefore defined by the cellular localization

of the protease? Does this influence the selection oppor-

tunities and subsequent destinations of cargo, given that

the PEXEL mediates export whereas the TEXEL also

permits targeting to the PVM? Studies aimed at addressing

these questions will help to understand why apparently

similar decisions are made at different locations. An in

silico analysis of the PLM in Babesia and Cryptosporidium
showed that they are spatially constrained, like in Plasmo-
dium [39�]. It will be interesting to see if the PLM-cleaving

enzymes are located in the ER or Golgi and whether they

control export alone or transport to other destinations.

Conclusions and future perspectives
It has become clear that Apicomplexans harbour multiple

pathways that act concurrently and successively to modify

the host as needed. Future studies are needed to decipher

the steps in trafficking immediately after PEXEL/

TEXEL cleavage. Examining the interacting partners
Current Opinion in Cell Biology 2016, 41:18–24 
of PMV/ASP5 and matured substrates will be important.

Indeed, understanding whether different cargo selection

occurs for proteins cleaved at different locations seems a

worthy cause. Together, these findings have led to some

provocative ideas and provided testable hypotheses on

the fundamental mechanisms of export in Apicomplexan

parasites.
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