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Sciences Division, CSIR National Chemical Laboratory, Pune, India; 8Ecology and
Evolutionary Biology Section, Institut de Biologie de l’Ecole Normale Supérieure, CNRS
UMR8197 INSERM U1024, Paris, France; 9Bioscience Core Laboratory, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia; 10Department of Biology,
University of Pennsylvania, Philadelphia, United States; 11Life Science Research Centre,
Faculty of Science, University of Ostrava, Ostrava, Czech Republic; 12School of Botany,
University of Melbourne, Parkville, Australia; 13Seattle Biomedical Research Institute,
Seattle, United States; 14Centro de Biologı́a Molecular Severo Ochoa, CSIC/Universidad
Autónoma de Madrid, Madrid, Spain; 15IE Business School, IE University, Madrid, Spain;
16Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenha-
gen, Copenhagen, Denmark; 17European Bioinformatics Institute (EMBL-EBI), Wellcome
Genome Campus, Hinxton, Cambridge, United Kingdom; 18Wellcome Trust Centre For
Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of
Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
19Broad Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard,
Cambridge, United States; 20Department of Microbiology, Monash University, Clayton,
Australia; 21Department of Microbiology and Immunology, Weill Cornell Medical College,
New York, United States; 22Department of Protozoology, Institute of Tropical Medicine,
Nagasaki University, Nagasaki, Japan; 23Department of Biochemistry, University of
Cambridge, Cambridge, United Kingdom; 24Canadian Institute for Advanced Research,
Toronto, Canada; 25Institute of Microbiology, Czech Academy of Sciences, České
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Abstract The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular

parasites of humans and animals with immense socio-economic and health impacts. We sequenced

nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic

photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and

from the endomembrane trafficking systems associated with a free-living lifestyle have been

progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor

contained a broad repertoire of genes many of which were repurposed for parasitic processes, such

as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein

families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs

of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar

apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery.

This study provides insights into how obligate parasites with diverse life strategies arose from a once

free-living phototrophic marine alga.

DOI: 10.7554/eLife.06974.001

Introduction
The phylum Apicomplexa is comprised of eukaryotic, unicellular, obligate intracellular parasites,

infecting a diverse range of hosts from marine invertebrates, amphibians, reptiles, birds to mammals

including humans. More than 5000 species have been described to date, and over 1 million

apicomplexan species are estimated to exist (Adl et al., 2007; Pawlowski et al., 2012). Clinically and

economically important apicomplexan pathogens, for example, Babesia, Cryptosporidium, Eimeria,

Neospora, Theileria, Toxoplasma (Tenter et al., 2000), and the malaria-causing parasite Plasmodium

wreak profound negative impacts on animal and human welfare.

Despite their diverse host tropism (Roos, 2005) and life cycle strategies, apicomplexans possess several

unifying molecular and cellular features, including the abundance of specific classes of nucleic acid-binding

eLife digest Single-celled parasites cause many severe diseases in humans and animals. The

apicomplexans form probably the most successful group of these parasites and include the parasites

that cause malaria. Apicomplexans infect a broad range of hosts, including humans, reptiles, birds,

and insects, and often have complicated life cycles. For example, the malaria-causing parasites

spread by moving from humans to female mosquitoes and then back to humans.

Despite significant differences amongst apicomplexans, these single-celled parasites also share

a number of features that are not seen in other living species. How and when these features arose

remains unclear. It is known from previous work that apicomplexans are closely related to single-

celled algae. But unlike apicomplexans, which depend on a host animal to survive, these algae live

freely in their environment, often in close association with corals.

Woo et al. have now sequenced the genomes of two photosynthetic algae that are thought to be

close living relatives of the apicomplexans. These genomes were then compared to each other and to

the genomes of other algae and apicomplexans. These comparisons reconfirmed that the two algae

that were studied were close relatives of the apicomplexans.

Further analyses suggested that thousands of genes were lost as an ancient free-living algae

evolved into the apicomplexan ancestor, and further losses occurred as these early parasites evolved

into modern species. The lost genes were typically those that are important for free-living organisms,

but are either a hindrance to, or not needed in, a parasitic lifestyle. Some of the ancestor’s genes,

especially those that coded for the building blocks of flagella (structures which free-living algae use

to move around), were repurposed in ways that helped the apicomplexans to invade their hosts.

Understanding this repurposing process in greater detail will help to identify key molecules in these

deadly parasites that could be targeted by drug treatments. It will also offer answers to one of the

most fascinating questions in evolutionary biology: how parasites have evolved from free-living

organisms.

DOI: 10.7554/eLife.06974.002
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proteins with regulatory functions in parasitic processes (Campbell et al., 2010; Flueck et al., 2010;

Radke et al., 2013;Kafsack et al., 2014; Sinha et al., 2014), extracellular proteins for interactions with the

host (Templeton et al., 2004a; Anantharaman et al., 2007), an apical complex comprising a system of

cytoskeletal elements and secretory organelles (Hu et al., 2006), an inner membrane complex (IMC)

derived from the alveoli (Eisen et al., 2006; Kono et al., 2012; Shoguchi et al., 2013), and a non-

photosynthetic secondary plastid, termed the apicoplast (McFadden et al., 1996). How and when these

features arose is unclear, owing to the lack of suitable outgroup species for comparative analyses.

Chromerids comprise single-celled photosynthetic colpodellids closely associated (and likely

symbiotic) with corals (Cumbo et al., 2013; Janouškovec et al., 2013). Phylogenetic analysis

demonstrates that these algae are closely related to Apicomplexa (Janouškovec et al., 2013),

confirming the long-standing hypothesis that apicomplexan parasites originated from a free-living,

photosynthetic alga (McFadden et al., 1996; Moore et al., 2008). Two known chromerid species,

Chromera velia and Vitrella brassicaformis (Moore et al., 2008; Obornı́k et al., 2011, 2012), can be

cultivated in the laboratory, and their plastid (Janouškovec et al., 2010) and mitochondrial genomes

(Flegontov et al., 2015) have been described. We explored whole nuclear genomes of Chromera and

Vitrella to understand how obligate intracellular parasitism has evolved in Apicomplexa.

Results and discussion

Genome assembly and annotation
A shotgun approach was used to sequence and assemble the Chromera and Vitrella nuclear genome

into 5953 and 1064 scaffolds totaling 193.6 and 72.7 million base-pairs (Mb). The disparity in genome

size is attributable largely to the presence of transposable elements (TEs) totaling ∼30 Mb in

Chromera vs only 1.5 Mb in Vitrella, as the predicted number of protein-coding genes is almost the

same at 26,112 and 22,817, respectively. Detailed characterizations of the two genomes and their

gene structures are described in Appendix 1 and Supplementary files 1, 2.

Ancestral gene content of free-living and parasitic species
We constructed a phylogenetic tree of 26 species, comprising Chromera, Vitrella, 15 apicomplexans, 2

dinoflagellates, 2 ciliates, 4 stramenopiles, and a green alga. On the phylogenetic tree (Figure 1A),

Chromera and Vitrella formed a group closest to the apicomplexan clade, consistent with previous

phylogenies (Moore et al., 2008; Janouškovec et al., 2010, 2013, 2015; Obornı́k et al., 2012). The

long branches from their common node are consistent with drastic differences in morphology, life cycle

(Obornı́k et al., 2012), plastid (Janouškovec et al., 2010) and mitochondrial genomes (Flegontov et al.,

2015) between the two chromerids (Figure 1A). Likewise, despite common origins, apicomplexans show

extensively diverse lifestyles, including host tropism and invasion phenotypes (Figure 1B).

We reconstructed the parsimonious gene repertoires for the ancestors of the 26 species, at the

nodes of the phylogenetic tree (Figure 2A; Figure 2—figure supplement 1). We note five key nodes

on the evolutionary paths to present-day apicomplexans: the alveolate ancestor; the common

ancestor of Apicomplexa and chromerids, termed the proto-apicomplexan ancestor; the apicom-

plexan ancestor; the ancestor of apicomplexan lineages, for example, coccidia and hematozoa; and

extant apicomplexans (Figure 2A). Protein-coding genes from the 26 species were clustered by

OrthoMCL (Li et al., 2003) into groups of homologous genes, hereafter defined as orthogroups. We

note that an orthogroup could have homologous genes from different species (putative orthologs) or

from the same species (putative paralogs arising from gene duplications). Gains or losses of

orthogroups are displayed as green or red sections of a pie on the phylogenetic tree in Figure 2A.

Divergence of the proto-apicomplexan ancestor from the alveolate ancestor (Stage I) was

accompanied by losses of 1668 and gains of 2197 orthogroups (sum of the two ‘pies’ in Stage I).

Transition of the free-living proto-apicomplexan ancestor to the apicomplexan ancestor (Stage II) is

accompanied by many gene losses (3862 orthogroups) but few gains (81 orthogroups) (Figure 2A).

Divergence of coccidians, for example, Toxoplasma gondii, from the apicomplexan ancestor (Stage III)

is characterized by modest changes (537 losses; 414 gains), whereas divergence of hematozoans, for

example, Plasmodium spp., is marked by drastic losses (1384 losses; 77 gains) (Figure 2A). Further

divergence of apicomplexan taxa beyond Stage III is characterized by modest, lineage-specific gains

(Figure 2A). Functional composition of gained genes at various stages will be discussed in later

sections. Paucity of gained genes (81 orthogroups) during Stage II indicates that the genome of the
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free-living ancestor possessed most of the genes that were present in the common ancestor of

apicomplexans and survived in their present-day descendants.

Progressive, lineage-specific losses during apicomplexan evolution
Parasite evolution has been associated with genome reduction across several branches of the tree

of life (Keeling, 2004; Sakharkar et al., 2004; Morrison et al., 2007). Examples also exist,

however, where parasite genomes are not reduced (Pombert et al., 2014) but expanded

(Raffaele and Kamoun, 2012), underscoring the fact that the genome reduction process during

parasite evolution is not completely understood. We sought to characterize in detail the dynamics

of gene loss across apicomplexan evolution, particularly for components of molecular processes

that are hallmarks of free-living lifestyle. We performed a systematic analysis of the cellular

components involved in: (1) cellular metabolic pathways; (2) the endomembrane trafficking

systems, regulating the movement of molecules across intracellular compartments in eukaryotes

(Leung et al., 2008); and (3) the flagellum, a highly conserved apparatus for motility in aqueous

environment (Silflow and Lefebvre, 2001).

Figure 1. Phylogenetic, parasitological, and genomic context of chromerids. (A) Phylogenetic tree of 26 alveolate

and outgroup species (see Figure 1—source data 1 for the list of species). Multiple sequence alignments of 101

genes, which have 1:1 orthologs across all species (Figure 1—source data 2) were concatenated to a single matrix

of 33,997 aligned amino acids. A maximum likelihood tree was inferred using RAxML with 1000 bootstraps, with

Chlamydomonas reinhardtii as an outgroup. All clades are supported with bootstrap values of 100% except one

node (*) with 99%, and also with 1.00 posterior probability from a bayesian phylogenetic tree based on PhyloBayes

(Lartillot and Philippe, 2004) (CAT-GTR). (B) Lifestyles of the apicomplexan and chromerid species under

investigation. ‘?’: uncertainty due to lack of relevant data.

DOI: 10.7554/eLife.06974.003

The following source data are available for figure 1:

Source data 1. List of 24 species excluding Chomera and Vitrella used in this study and their data sources.

DOI: 10.7554/eLife.06974.004

Source data 2. A list of 101 shared orthogroups with a single gene in all of the 26 species, used for the species

phylogenetic tree.

DOI: 10.7554/eLife.06974.005
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Figure 2. Gene content changes during apicomplexan evolution. (A) Gains and losses of orthogroups inferred based on Dollo parsimony (Csuros, 2010).

Analysis based on a gene birth-and-death model provided similar results (Figure 2—figure supplement 1A). Stages I, II, and III (shown in blue, pink and

green, respectively) represent groups of branches from the alveolate ancestor to apicomplexan lineage ancestors. Stage III could not be determined

for Cryptosporidium lineage because of sparse taxon sampling. The area of a green or red section in a pie is proportional to the number of gained or

lost orthogroups, respectively. (B, C) Overview of metabolic capabilities (B) and endomembrane components (C) in apicomplexan and chromerid

ancestors. Gains and losses of enzymes and components were inferred, based on Dollo parsimony (Csuros, 2010). The pie charts are color-coded

based on the fraction of enzymes or components present. Additional results from analysis of individual components and enzymes can be found in

Figure 2—figure supplements 2,3,4,5, Supplementary file 3. Individual components and enzymes are listed in Figure 2—source data 1, 2. Similar

analyses were performed for components encoding flagellar apparatus (Figure 2—figure supplement 5B).

DOI: 10.7554/eLife.06974.006

The following source data and figure supplements are available for figure 2:

Source data 1. Distribution of enzymes based on KEGG.

DOI: 10.7554/eLife.06974.007

Source data 2. Genes encoding subunits of the endomembrane trafficking system.

DOI: 10.7554/eLife.06974.008

Figure supplement 1. Gene gains and losses across the hypothetical ancestors of the 26 species under study.

DOI: 10.7554/eLife.06974.009

Figure supplement 2. Overview of chromerid Carbamoyl Phosphate Synthetase (CPS) and Fatty Acid Synthase I (FAS I).

DOI: 10.7554/eLife.06974.010

Figure supplement 3. Summary of metabolic pathways based on KEGG Assignments.

DOI: 10.7554/eLife.06974.011

Figure supplement 4. An overview of endomembrane trafficking components.

DOI: 10.7554/eLife.06974.012

Figure supplement 5. Evolutionary history of genes encoding cytoskeleton across 26 species.

DOI: 10.7554/eLife.06974.013

The following source data is available for figure 2s5:

Figure supplement 5—source data 1. Genes encoding components of the flagellar apparatus in the 26 species.

DOI: 10.7554/eLife.06974.014
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The inferred proto-apicomplexan ancestor, like present-day chromerids, possessed complete

metabolic pathways for sugar metabolism, assimilation of nitrate and sulfite, and photosynthesis-related

functions (Figure 2B, Figure 2—figure supplement 3, Appendix 2, and Supplementary file 3). Unlike

in other photosynthetic algae, both Chromera and Vitrella initiate heme synthesis in the mitochondrion

using aminolevulinate synthase (C4 pathway), which thus far has been found only in a few eukaryotic

heterotrophs, such as Euglena gracilis, dinoflagellates, and apicomplexans (Kořený et al., 2011; van

Dooren et al., 2012; Danne et al., 2013) (Appendix 2 and Supplementary file 4). Both chromerids and

apicomplexans encode modular multi-domain fatty acid synthase I (FASI)/polyketide synthase enzymes

and single-domain FASII components (Figure 2—figure supplement 2A,B). Treatment of Chromera

with a FASII inhibitor triclosan showed decreased production of long chain fatty acids (Figure 2—figure

supplement 2C and Appendix 2), suggesting that Chromera synthesizes short-chain saturated fatty

acids using the FASI pathway, which are then elongated using the FASII pathway. This was previously

demonstrated in Toxoplasma, an apicomplexan that possesses both FASI and FASII (Mazumdar and

Striepen, 2007). Likely, the proto-apicomplexan ancestor was a phototrophic alga harboring

characteristic metabolic features previously found only in apicomplexan parasites, especially with

regard to plastid-associated metabolic functions (see above and other examples in Appendix 2)

(Kořený et al., 2011; van Dooren et al., 2012; Danne et al., 2013).

Transition to an apicomplexan ancestor (Stage II) was accompanied by the loss of metabolic processes

including photosynthesis and sterol biosynthesis (Figure 2B and Figure 2—figure supplement 3). The

apicomplexan ancestor appeared to possess a significant complement of enzymes in various pathways

(Figure 2B) (Lim and McFadden, 2010). The differentiation of apicomplexan lineages (Stage III) was

accompanied by further lineage-specific losses: for example, loss of FASI in Plasmodium spp, loss of FASII

in Cryptosporidium spp., which has also lost the apicoplast, and loss of enzymes mediating polyamine

biosynthesis in all lineages except Plasmodium (Figure 2B and Figure 2—figure supplement 3). These

support the notion that enzymes involved in cellular metabolism critical for free-living organisms were not

completely lost during the transition to the apicomplexan ancestor, but were further lost during

subsequent differentiation and host-adaptation of apicomplexan lineages.

The proto-apicomplexan had a nearly complete repertoire of the endomembrane trafficking

complexes, and much of this repertoire persisted through to the apicomplexan ancestor (Stage II)

(Hager et al., 1999; Klinger et al., 2013a) (Figure 2C, Figure 2—figure supplement 4 and Appendix 3).

Differentiation of apicomplexan lineages (Stage III) was accompanied by lineage-specific losses, for

example, loss of the Endosomal Sorting Complex Required for Transport II (ESCRTII) in all lineages except

in piroplasms, whereas some components were retained across all lineages, such as the retromer complex

components and clathrin, both systems implicated in invasion processes (Pieperhoff et al., 2013; Tomavo

et al., 2013) (Figure 2C, Figure 2—figure supplement 4 and Appendix 3). These lineage-specific losses

have led to diverse, reduced sets of endomembrane trafficking components in present-day apicomplexans

(Hager et al., 1999; Klinger et al., 2013a). Some of these components that were present in chromerids

were absent in specific apicomplexan lineages as well as in dinoflagellates and ciliates, further clarifying

that these losses are independent, lineage-specific events rather than ancient, shared events.

All known components of flagella were present in the proto-apicomplexan ancestor (Figure 2—figure

supplement 5A,B). Most of the components were retained in the apicomplexan ancestor (Stage II), but

losses occurred as apicomplexan lineages differentiated (Stage III). Components of intraflagellar

transport, which are typically essential for assembling flagella, were lost in the other lineages except in

coccidians (Figure 2—figure supplement 5A,B). The basal body proteins, which support an organizing

center for microtubules, were lost from piroplasms. Some striated fiber assemblin (SFA) proteins, typically

associated with basal body rootlets, were maintained in all apicomplexan lineages including piroplasms

(Figure 2—figure supplement 5A,B,D); their presence has been hailed as evidence that some flagellar-

proteins are repurposed for new functions in apicomplexans (see below) (Francia et al., 2012).

In summary, one of the major events during apicomplexan evolution is progressive, continued loss of

components important for free-living organisms. While Stage II was accompanied by a massive loss of such

components including those implicated in photosynthesis, the apicomplexan ancestor still possessed many

proteins, which were lost later during differentiation of lineages with diverse life strategies.

Emergent features of apicomplexans
Evolution of present-day apicomplexan parasites was accompanied not only by gene losses as noted

above (Figure 2) but also by gene gains. We sought to determine if genes gained at a particular stage
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of apicomplexan evolution, as depicted by the gray violin in Figure 3, would be over-represented with

those involved in parasitic processes such as intracellular invasion into and egress from host cells. For

Plasmodium falciparum and T. gondii, we compiled three classes of protein-coding genes directly or

indirectly involved in parasitic processes of apicomplexans based on in silico prediction or information

from previous functional studies (‘Materials and methods’). Extracellular proteins are secreted by the

apicomplexans for various parasitic processes, for example, some of them are targeted to the

host cytoplasm, nucleus, and plasma membrane to modulate parasite–host interactions

Figure 3. Evolutionary history of Plasmodium falciparum and Toxoplasma gondii genes. Violin plots showing

distribution of evolutionary ages of genes (Y-axis: from species-specific (bottom) to deeply conserved (top)) in P.

falciparum (A) and T. gondii (B). Evolutionary age of a gene is defined as the earliest node on the evolutionary path

of the phylogenetic tree where homolog can be detected (‘Materials and methods’). The horizontal thickness of

a violin is proportional to the number of genes (gray) or the fraction of genes (yellow) in a functional category (X-axis)

out of all with the same evolutionary age. Selected functional sub-categories are overlaid with red, green, or blue

violin plots. The maximum width of each violin is scaled to be uniform across categories. Inner boxes in the gray

violins indicate inter-quartile ranges and circles indicate medians. Colored shades along the X-axis indicate Stages

I–III (Figure 2). Extracellular proteins include proteins targeted to host cytoplasm, nucleus, and plasma membrane

(‘exportome’) and all other proteins, which are secreted or localized on the parasite surface (‘others’). Cytoskeletal

proteins include proteins associated with ‘actomyosin motor complex’ and ‘IMC’. All extracellular and cytoskeletal

proteins are listed in Figure 3—source data 1, 2. Nucleic acid-binding proteins are predicted in silico based on

presence of DNA-binding domains (DBDs) and RNA-binding domains (RBDs). See ‘Materials and methods’ for

details on how these genes are defined and compiled. Domain architectures of representative extracellular proteins

in apicomplexans and chromerids are displayed as schematics in Figure 3—figure supplement 4. Sequence

homology networks (Figure 2—figure supplement 5E and Figure 3—figure supplements 1B, 2B, 3B) and gene

gains and losses on the phylogenetic tree (Figure 3—figure supplements 1A, 2A, 3A) provide complementary

views on the evolutionary history of these genes.

DOI: 10.7554/eLife.06974.015

The following source data and figure supplements are available for figure 3:

Source data 1. Genes encoding extracellular proteins in P.falciparum and T. gondii.

DOI: 10.7554/eLife.06974.016

Source data 2. Genes encoding cytoskeletal components in the 26 species.

DOI: 10.7554/eLife.06974.017

Figure supplement 1. Evolutionary history of apiAP2 genes.

DOI: 10.7554/eLife.06974.018

Figure supplement 2. Evolutionary history of alveolins.

DOI: 10.7554/eLife.06974.019

Figure supplement 3. Evolutionary history of RAP genes.

DOI: 10.7554/eLife.06974.020

Figure supplement 4. Domain architectures of extracellular proteins in chromerids and apicomplexans.

DOI: 10.7554/eLife.06974.021
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(Mundwiler-Pachlatko and Beck, 2013; Bougdour et al., 2014). Cytoskeletal proteins provide

structural support to the cell and also the molecular machinery for motility and intracellular invasion

(Baum et al., 2006; Soldati-Favre, 2008). Proteins with DNA-binding domains (DBDs) or RNA-

binding domains (RBDs) can regulate various molecular processes of apicomplexan parasites. Indeed,

proteins with AP2 (apiAP2) DBD have been shown to act as genetic control switches for diverse

apicomplexan processes (Balaji et al., 2005; Campbell et al., 2010; Flueck et al., 2010; Radke et al.,

2013; Sinha et al., 2014; Kaneko et al., 2015).

Genes encoding extracellular proteins exported into the host environments were over-represented

among those gained after Stage III (Figure 3), suggesting that adaptation to specific hosts was

accompanied by expansion of extracellular proteins mediating host–parasite interactions (Templeton

et al., 2004a; Anantharaman et al., 2007). Stage III was accompanied by gains of those encoding

DBD proteins, mostly apiAP2 proteins (Figure 3 and Figure 3—figure supplement 1A,B), suggesting

extensive regulatory changes mediated by apiAP2 proteins during lineage differentiation. We note

that losses of other canonical DBD proteins, for example, proteins with HSF_DNA-bind (Pfam:

PF00447) domain during transition to apicomplexan ancestor (Stage II) and proteins with Tub (Pfam:

PF01167) domain along the piroplasm lineage, contribute to further dominance of apiAP2 among the

DBD proteins (Figure 3—figure supplement 1C). Stage II was accompanied by over-represented

gains of various cytoskeletal components, including alveolins, those of the actomyosin complex (e.g.,

myosins) and glideosome-associated proteins with multiple membrane spans 1 and 3 (GAPM1 and

GAPM3), suggesting that the molecular machinery powering gliding motility, which is essential for

host cell invasion arose during evolution to apicomplexans (Frenal et al., 2010) (Figure 3,

Figure 3—figure supplement 2, and Appendix 4). Gene gains during Stage I were over-

represented by proteins with ‘RBD abundant in Apicomplexans’ (RAP, Pfam: PF08373) (Lee and

Hong, 2004), many of which were conserved as one-to-one orthologs across descending lineages,

suggesting development of evolutionarily conserved functions before apicomplexans and chromerids

diverged (Figure 3, and Figure 3—figure supplement 3). Chromerid genomes encode many

orthologs of apicomplexan cytoskeletal proteins (Appendix 4), including GAPM2, a member of an

important protein family for apicomplexan cytoskeletal structure and gliding motility (Bullen et al.,

2009), and the IMC sub-compartment protein family (ISP), implicated in establishing apical polarity

and coordinating the unique cell cycle of apicomplexans (Poulin et al., 2013) (Figure 2—figure

supplement 5E). These data suggest that some components existed in the free-living proto-

apicomplexan ancestor and were subsequently repurposed for parasitic processes of apicomplexans.

The Chromera and Vitrella genomes encode many proteins that are specific to chromerids yet

contain functional domains implicated in molecular processes of apicomplexan parasites. For example,

there are chromerid-specific proteins with domain architectures similar to those in apicomplexan

extracellular proteins, including those previously implicated in host interactions and described in

apicomplexans only (Figure 3—figure supplement 4 and Appendix 5, and Supplementary file 5).

Presence of such chromerid proteins implies some commonality in extracellular recognition and cross-

species interactions and this correlates well with the presumed associations with the coral holobiont

(Janouškovec et al., 2012, 2013; Cumbo et al., 2013). Importantly, chromerid genomes encode

numerous apiAP2 proteins, more abundant than dinoflagellates, suggesting that they have expanded in

the proto-apicomplexan ancestor after it split from dinoflagellates (Figure 3—figure supplement 1D).

Many of the chromerid apiAP2 proteins belong to putative paralogous clusters, suggesting that their

expansion was driven by gene duplication (Figure 3—figure supplement 1D; Appendix 6). Only a small

subset of the apiAP2 proteins are shared across apicomplexans, suggesting that the large apiAP2

complement in the proto-apicomplexan ancestor has diversified independently in descending lineages

(Figure 3—figure supplement 1A).

In summary, genes encoding critical components of the parasitic lifestyle of apicomplexans were

gained at different stages of apicomplexan evolution, some implying subsequent specialization to

particular host niches, but others suggesting early adaptations before committing to parasitic lifestyle.

This is evident by chromerid orthologs of many such proteins, for example, RAP proteins and

specialized cytoskeletal components. Further, chromerid genomes encode chromerid-specific

proteins that are not detected as orthologs of apicomplexan proteins but still have functional

domains implicated in parasitic processes in apicomplexans. Together, these data imply that

a molecular transition had occurred in free-living ancestors of apicomplexans, providing a foundation

for host–parasite interactions and further adaptation.
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Conserved gene expression programs in the proto-apicomplexan
ancestor
Chromera and Vitrella genomes allowed us to reconstruct the gene content of the free-living ancestor

of apicomplexans. To infer their putative functions using genome-wide gene expression information

(Hu et al., 2010), we cultured Chromera under 36 different combinations of temperatures, iron and

salt concentrations, and generated their gene expression profiles by RNA-seq (Box et al., 2005).

In addition, we have obtained a publicly available growth perturbation data set for P. falciparum

(Hu et al., 2010). There were 1918 orthogroups shared between the two species. We identified pairs

of orthogroups that are co-expressed, that is, showing similar expression patterns across the various

conditions, in both species (‘Materials and methods’) (Figure 4—figure supplement 1A). Such an

orthogroup pair, that is, those with conserved co-expression between the two species, would include

candidate genes that have been co-regulated together during apicomplexan evolution, from the free-

living ancestor to present-day parasites due to conserved functions. This approach, successfully

utilized by several studies in the past (Stuart et al., 2003; Mutwil et al., 2011; Gerstein et al., 2014),

led to the following two observations in this study.

Many RAP genes appeared during Stage I and have been conserved across the descending phyla

(Figure 3 and Figure 3—figure supplement 3), but their precise cellular roles are unknown. For 11

out of 12 orthogroups with RAP domains, co-expressed orthogroups overlapped significantly (Fisher’s

exact test, p < 0.05) between P. falciparum and Chromera, suggesting involvement of RAP proteins in

cellular processes evolutionarily conserved across apicomplexans and chromerids (Figure 4A). RAP

and their co-expressed orthogroups encode proteins with putative mitochondrial import signals more

often than expected by chance in Chromera and P. falciparum (Fisher’s exact test, p < 0.05)

(Figure 4B), and also in other apicomplexans and chromerids (Figure 4—figure supplement 1B). We

have randomly chosen three Toxoplasma RAP genes with predicted mitochondrial localization signals

(Supplementary file 6) and confirmed experimentally by 3′ endogenous gene-tagging with reporter

epitopes that all three are localized to the organelle (Figure 4C). Some of the orthogroups co-

expressed with orthogroups containing RAP domains encode protein products predicted to be

metabolic enzymes, implying possible involvement of RAPs in mitochondrial metabolism

(Figure 4—figure supplement 1C). Consistent with this, the Cryptosporidium lineage that has

a highly reduced mitochondrion lacking both the genome and most canonical metabolic pathways

(Abrahamsen et al., 2004; Xu et al., 2004) is the only apicomplexan group to have also lost its RAP

repertoire (Figure 4—figure supplement 1D). Loss of RAPs along with a set of mitochondrial

functions in this lineage is consistent with a mitochondrial role for RAPs. We speculate that the free-

living proto-apicomplexan ancestor possessed within its mitochondrion a regulatory process

mediated by RNA-binding activities of the RAP proteins, which has been retained by the extant

apicomplexans and chromerids.

As discussed earlier, the proto-apicomplexan ancestor appears to have possessed genes

implicated in invasion processes of present-day apicomplexans (Figure 3). Among the 1918

orthogroups, we identified 80 orthogroups comprising genes functionally annotated as implicated

in invasion processes. The frequency of co-expression amongst them in the free-living Chromera was

significantly higher than expected by chance (p < 0.0005), suggesting pre-existing functional

relationships before transitioning to parasites (Figure 4D). We identified several modules or groups of

co-expressed orthogroups (Figure 4E). In one of the co-expression modules (numbered 1 in Figures

4E), 9 out of 10 orthogroups are co-expressed with a gene encoding SFA (Cvel_872), a key protein for

organizing the basal bodies of the flagellar apparatus in algae and the apical complexes in

apicomplexans (Kawase et al., 2007; Francia et al., 2012) (Figure 4F). We note that SFAs are the

only flagellar components found in all apicomplexans tested (Figure 2—figure supplement 5A). Also

in this module, for 9 out of 10 orthogroups, their co-expressed orthogroups in Chromera overlapped

significantly with those in P. falciparum (Fisher’s exact test, p < 0.05), indicating that their regulatory

programs have been evolutionarily conserved (Figure 4G). This module include various types of genes

implicated in host cell invasion processes of apicomplexans such as genes encoding rhoptry protein

ROP9, apical sushi protein ASP, and gliding motility components GAP40 and GAPM2. The apical

complex has been postulated to have emerged from the flagellar apparatus and associated cellular

transport systems in free-living algae, based on ultrastructural evidence (Okamoto and Keeling,

2014; Portman et al., 2014). These results suggest that, in the free-living ancestor, some of the genes
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Figure 4. Conserved transcriptional programs in apicomplexans and chromerids. (A) Boxplot showing the extent of

evolutionary conservation of transcriptional programs for all orthogroups or those with RAP domains. X-axis: ‘All’ (all

orthogroups excluding RAP); ‘RAP’ (orthogroups with RAP domains). Y-axis: log-transformed odds-ratio,

representing, for each orthogroup, the degree of overlap between its co-expressed orthogroups in Chromera and

those in P. falciparum. (B) Bar chart showing the fraction of orthogroups (Y-axis) predicted to be targeted to

mitochondria in both species (‘Materials and methods’). The number of genes are displayed below each bar. X-axis:

‘All’ (all orthogroups excluding the other two categories); ‘Coexpr’ (orthogroups co-expressed with RAP in both

species); ‘RAP’ (orthogroups with RAP domains). The fractions in ’Coexpr’ and ’RAP’ groups were compared against

the fraction in ’All’, and p-values based Fisher’s exact test are displayed above the bar. Files deposited in European

Nucleotide Archive are listed in Figure 4—source data 1 with corresponding conditions. (C) Sub-cellular

Figure 4. continued on next page
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implicated in the invasion process of present-day apicomplexans were functionally associated with

those implicated in flagellar motility, providing the much-needed genetic evidence for the postulate.

We speculate that a group of functionally related proteins associated with the flagellar apparatus was

repurposed as a module of the apical complex and became a foundation for the invasion machinery.

Conclusion
Analysis of Chromera and Vitrella genomes has enabled insights into how apicomplexan parasites

have evolved from free-living ancestors. The transition to parasitism was accompanied by massive

genomic loss that continued as its descendants became specialized intracellular parasites infecting

diverse hosts. The genome of free-living photosynthetic ancestors encodes many component proteins

previously assumed to be restricted to the parasitic apicomplexan lineages. Such pre-existing

components, including those of what would later become part of the invasion machinery, were co-

opted during evolution to facilitate a successful parasitic lifestyle in multiple hosts. The genome of the

proto-apicomplexan ancestor served as a molecular blueprint for evolution of the most successful

group of eukaryotic parasites known to date.

Data access
Sequencing data have been deposited in the European Bioinformatics Institute under the European

Nucleotide Archive (ENA) sample accession number ERP006228 for C. velia and ERP006229 for

V. brassicaformis for all DNA- and RNA-seq experiments. The assembly and the annotations were

submitted under accession numbers CDMZ01000001-CDMZ01005953 for C. velia and

CDMY01000001-CDMY01001064 for V. brassicaformis. Some of the Vitrella DNA-seq experiments

were done at Broad Institute and are deposited at Short Read Archive under accession numbers

SRX152523 and SRX152525. The annotations and assemblies can be viewed and queried in EupathDB

(http://cryptodb.org/cryptodb/).

Materials and methods

DNA preparation and sequencing
Genomic DNA of C. velia CCMP2878 (subsequently referred to as Chromera) and V. brassicaformis

CCMP3155 (subsequently referred to as Vitrella) was extracted and then sheared into short fragment

Figure 4. Continued

localization of RAP proteins encoded by TGME49_237010, TGME49_269830, and TGME49_289200 was tested in T.

gondii by 3′ tagging of the endogenous genes with the coding sequence for the hemagglutinin epitope, together

with a mitochondrial marker Tom40. See Supplementary file 6 for details of the localization predictions.

(D) Distributions of Spearman’s rank correlation coefficients of gene expression between all possible pairs from the

80 orthogroups implicated in invasion processes in apicomplexans (black outline) were compared against those

from 80 randomly selected ones (histogram). The p value indicates statistical significance of the difference based on

10,000 random samplings. The 80 orthogroups and corresponding genes in Chromera and P. falciparum are listed in

Figure 4—source data 2. (E) Heatmap showing a matrix of correlation coefficients amongst the 80 orthogroups.

Based on a hierarchical clustering, we classified them into six co-expression modules, labeled as numeral 1–6.

(F) Heatmap showing correlation coefficients with striated fiber assemblin (SFA) (Cvel_872). The color scheme is the

same as in (E). (G) Heatmap indicating statistical significance of conserved transcriptional program, that is, the odds-

ratio as defined in (A) (Fisher’s exact test, p < 0.05 (gray); p < 0.005 (black)).

DOI: 10.7554/eLife.06974.022

The following source data and figure supplement are available for figure 4:

Source data 1. RNA-seq libraries of Chromera velia under various growth conditions.

DOI: 10.7554/eLife.06974.023

Source data 2. List of genes implicated in invasion processes in apicomplexans.

DOI: 10.7554/eLife.06974.024

Source data 3. Evolutionary conservation of 12 orthogroups with RAP domains (for ’RAP’ category in Figure 4A).

DOI: 10.7554/eLife.06974.034

Figure supplement 1. Mitochondrial targeting of RAP and its putative role in mitochondrial metabolism.

DOI: 10.7554/eLife.06974.025
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size libraries (300–500 base pair (bp)) and large fragment size libraries (3–8 kbp fragments) by

focused-ultrasonication (Covaris Inc., Woburn, USA). The last 3–8 kb libraries were prepared following

Nextera mate pair protocol, following manufacturer’s instructions. We used three different methods

to generate the library: the Illumina (Illumina, San Diego, CA) TruSeq DNA protocol LT Sample Prep

Kit (catalog no. #FC-121-2001), an amplification-free method (Kozarewa et al., 2009) (TruSeq DNA PCR-

Free LT Sample Preparation Kit catalog no. #FC-121-3001) and the Illumina Nextera Mate Pair Sample

Preparation Kit (catalog no. #FC-132-1001). The libraries were sequenced on an Illumina HiSeq2000

platform following the manufacturers standard cluster generation and sequencing protocols (Bentley

et al., 2008; Quail et al., 2012). Image analysis, base-calling, and quality filtering were processed by

Illumina software.

RNA preparation and sequencing
For isolation of RNAs, Chromera and Vitrella were grown under standard culture conditions

(Obornı́k et al., 2012). Total RNA was extracted from the cells using TRIzol. The polyA+ RNA fraction

was selected using oligo(dT) beads, and RNA-seq libraries were prepared using TruSeq RNA Sample

Prep kit (catalog no. FC-122-1001). Strand-specific RNA-seq libraries were prepared using TruSeq

Stranded mRNA LT Sample Prep Kit (catalog no. RS-122-2101) and sequenced as paired-end (2 x 100

bp) reads on a HiSeq2000 platform.

We performed additional RNA sequencing of Chromera subject to various environmental

perturbations, to construct a global gene expression network based on transcriptomes under various

perturbation conditions during in vitro growth. Chromera cultures were exposed to a combination of

stresses (Figure 4—figure supplement 1C). First, six different media were prepared from the

combinations of salt concentration (16.7 g/l, 33.3 g/l, 66.6 g/l) and iron deficiency by chelation

(Sutak et al., 2010). After seeding, the cultures were maintained in the normal temperature and light

condition for eleven days (Obornı́k et al., 2011). After randomization, the cultures were incubated at

26˚C, 37˚C, or 14˚C for 0 (control), 0.5, or 2 hr. There were two biological replicates of each, in total 66

flasks of the cultures. Then, the cultures were processed with centrifugation at 3500 RPM for 15 min at

4˚C to precipitate the cells. Total RNA was extracted from the 66 cultures after the treatments using

Norgen RNA Extraction kit based on manufacturer’s protocol (Norgen Biotek Corporation, Canada).

RNA quality was assessed using Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). RNA

concentration was determined with a Qubit (Invitrogen, Carlsbad, CA). Strand-specific RNA-seq

libraries were prepared from extracted high-quality RNAs (RIN ≥8.0 as measured on an Agilent

Bioanalyser 2100) using the Illumina TrueSeq LT stranded RNA sample kit according to manufacturer’s

instructions. Prior to cluster generation, concentration and size of libraries were assayed using the Agilent

DNA1000 kit. Libraries from all samples were sequenced as single-end (1 x 50 bp) reads on the Illumina

HiSeq 2000. The RNA-seq reads were aligned to the reference genome using tophat (version 2.0.8, default

parameters) and cufflinks (version 2-1.0.2, default parameters) (Trapnell et al., 2012). The FPKM values

were log2 normalized with an offset of 1 and were further corrected for different distributions across the

samples using the quantile normalization method (Bolstad et al., 2003).

Genome assembly
For Vitrella, the reads were corrected and assembled followed by several base correction, scaffolding

and gap filling steps as briefly described below. As first step, the short insert libraries were corrected

with SGA (Simpson and Durbin, 2012) (version 0.9.19). The corrected reads were assembled with

velvet (Zerbino and Birney, 2008) (version 1.2.08). Iterating through different parameter settings, we

choose a k-mer of 75 bp as the best parameter set. The resulting scaffolds (larger than 1 kb) were

further scaffolded with SSPACE (Boetzer et al., 2011) using first the Illumina library (insert = 550 bp)

and larger insert (1 kb) Illumina library reads. Sequencing gaps were closed with Gapfiller (Boetzer

and Pirovano, 2012) (version 1.1.1) with two iterations, using the bowtie mapping option and PCR-

Free libraries. Base pair call errors were corrected in three iterations of ICORN (Otto et al., 2010),

using the amplification-free library. Furthermore, sequencing gaps were closed, using IMAGE (Tsai

et al., 2010) with the amplification-free library. The assembly was quality-controlled using REAPR

(Hunt et al., 2013), breaking the contigs at possible miss-assemblies, using the mate pair libraries.

This was followed by another scaffolding step. We systematically removed 620 scaffolds containing

25.65 Mb representing the bacterial contamination. The Vitrella CCMP3155 assembly contains 72.7

Woo et al. eLife 2015;4:e06974. DOI: 10.7554/eLife.06974 12 of 41

Research article Genomics and evolutionary biology | Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.06974


Mb (including 931,689 N’s) in 1064 scaffolds (ENA accession numbers CDMY01000001-

CDMY01001064). The scaffolds were constructed from 4177 contigs.

For Chromera, the assembly pipeline and the algorithms used were the same as Vitrella, but due to

the larger size, higher amount of low-complexity regions, and difficulties in generating high-quality

large insert size libraries, additional steps were included to the assembly process. First, the reads of

the PCR-Free library were corrected with SGA (Simpson and Durbin, 2012) and then assembled with

velvet and using a k-mer of 71 (version August 2011). Next, the contigs were scaffolded, gapfilled, and

corrected with ICORN, as described earlier. We mapped the reads of all large insert size libraries

using SMALT (ftp://ftp.sanger.ac.uk/pub/resources/software/smalt/). We excluded scaffolds smaller

than 1 kb. Different iterations with SSPACE were undertaken and the assembly was quality-checked

with REAPR. After scaffolding, gapfiller and IMAGE were run as above, followed by ICORN. The 1725

scaffolds (spanning 16.02 Mb) representing bacterial contamination were removed. The final assembly

of Chromera CCMP2878 contains 193.66 Mb (including 582,995 N’s) in 5953 scaffolds (ENA accession

numbers CDMZ01000001-CDMZ01005953). The scaffolds are constructed from 13,987 contigs.

Gene prediction
We used Augustus (Stanke et al., 2006) (version 2.5.5) for gene prediction. We manually curated 716

and 245 gene models for Chromera and Vitrella, respectively, using BLAST similarity-based

approaches, and we also generated automated gene models using Cufflinks (Trapnell et al., 2012)

from RNA-seq data sets, in order to use them as a ‘training gene model set’ for Augustus prediction.

The strand-specific RNA-Seq, mapped with TopHat2 (Kim et al., 2013), was used as evidence in

Augustus for intron evidence.

In summary, from the Chromera and Vitrella genome, we ab initio predicted 30,478 and 23,503

protein-coding genes, respectively, of which 18,829 and 18,240 were detected as being expressed

from RNA-seq evidence as poly A+ transcripts (Supplementary file 1). Excluding putative TEs, 26,112

and 22,817 genes were predicted as protein-coding genes in Chromera and Vitrella. We annotated

partial genes, when a gene probably spans more than one scaffold, located at the borders of

a scaffold. We demarcated and annotated as pseudo genes if they contain in frame stop codons. We

flagged gene models as transposon elements, if they overlap with the predicted TE regions and had

no more than three and two intron for Chromera and Vitrella, respectively. To annotate untranslated

regions (UTRs) of the predicted protein-coding genes, we used CRAIG (Bernal et al., 2007) with

default parameters with mapping of the RNA-Seq data as computed by GSNAP (Wu and Nacu, 2010)

(version 2013-08-19, default parameters). The annotation of both genomes has the ENA accession

numbers CDMZ01000001-CDMZ01005953 and CDMY01000001-CDMY01001064 and is also avail-

able in EuPathDB (Aurrecoechea et al., 2013).

Functional annotations
The predicted genes were assigned putative functions based on BLASTP (E value <10−6) matches

against UNIPROT (version March 2012). The predicted protein products were assigned protein

domains using hmmsearch (HMMER 3.1b1, May 2013) for Pfam A v26.0. Statistical threshold defined

by the Pfam (Finn et al., 2014) database was used. We aligned AP2 sequences in apicomplexan

species based on PfamA AP2 (PF00847), and built apicomplexan-specific AP2 (apiAP2) hidden Markov

model (HMM), and scanned the predicted protein-coding genes for apiAP2 domains; we annotated

api-AP2 DNA-binding transcription factor genes with both domain and sequence E values to be less

than 10−3. The following Pfam RBDs were used to define RNA-binding proteins: ‘CAT_RBD’,

‘dsRNA_bind’, ‘S1’, ‘DEAD’, ‘KH_1’, ‘KH_2’, ‘KH_3’, ‘KH_4’, ‘KH_5’, ‘RRM_1’, ‘RRM_2’, ‘RRM_3’,

‘RRM_4’, ‘RRM_5’, ‘RRM_6’, ‘SET’, ‘PUF’, and ‘RAP’. The list of DBDs was downloaded from

a database of DBDs (Wilson et al., 2008). Transmembrane domains and signal peptides were

assigned with the tools TMHMM 2.0 (Krogh et al., 2001) and signalP 4.0 (Petersen et al., 2011),

respectively, with default parameters.

We collected several categories of genes implicated in parasitic processes in apicomplexans for

two archetypal apicomplexan parasites, Toxoplasma and Plasmodium. We primarily obtained

annotations from PlasmoDB (Bahl et al., 2003) and ToxoDB (Gajria et al., 2008). Information

for sub-cellular localization of genes is obtained from GeneDB (Logan-Klumpler et al., 2012)

and ApiLoc, a database of published protein sub-cellular localization for apicomplexan species
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(http://apiloc.biochem.unimelb.edu.au/apiloc/apiloc). Some putative parasite genes were inferred

based on orthology by OrthoMCL clustering (Li et al., 2003) with closely related species with results

from functional studies. We performed exhaustive literature searches to manually curate individual

genes, to define rules for in silico searches across the proteomes of this study, and to categorize the

identified genes based on their localization and function. The categories of parasite genes are

defined as follows.

Cytoskeleton
The cytoskeleton of an organism provides the necessary structural framework for the maintenance of

cell shape and integrity. We compiled two groups of cytoskeletal proteins, IMC associated proteins

and actomyosin complex. First, IMC associated proteins, comprises alveolin proteins, a membrane

occupation and recognition nexus protein (MORN), which associate with IMC and spindle poles and

are indispensible for asexual and sexual development (Ferguson et al., 2008). IMC sub-compartment

proteins (ISPs) are critical for establishing apical polarity in the parasite (Poulin et al., 2013). Second,

components of actomyosin motor complex, which powers the characteristic gliding motility (Soldati-

Favre, 2008), comprises actin, myosin, tubulin, gliding associated proteins (GAPs), aldolase, and

various actin-regulatory proteins, which will assist actin in the process of quick polymerization–

depolymerization cycles between F-actin and G-actin during this process. Examples of actin-

regulatory proteins are Arp2/3 complex and formins (FH2) for nucleation; F-actin capping for filament

regulation; coronin for cross-linking/bundling and profilin, CAP, cofilin/ADF and gelsolin for monomer

treadmilling (Baum et al., 2006).

Extracellular proteins
Extracellular proteins are defined as parasite proteins, which are localized either on the surface or

secreted off the parasite. They are released in a concerted manner to ensure successful adhesion to

the surface, entry into the host cell, multiplication, and escape. Extracellular proteins can be

categorized as (1) ‘exportome’ are proteins translocated to the host cytoplasm, membranes, and

nucleus crossing the boundary membrane parasitophorous vacuole (PV); and (2) ‘others’, which stay

on the parasite surface or released from the parasite, but not into the host intracellular space. The

exportome genes are released mostly from the parasite’s secretary organelles such as rhoptries and

dense granules (Ravindran and Boothroyd, 2008; Treeck et al., 2011; Mundwiler-Pachlatko and

Beck, 2013; Bougdour et al., 2014). Some of these genes possess host targeting or also known as

the Plasmodium export element (PEXEL). Many PEXEL-negative proteins have been identified too

(Hsiao et al., 2013; Mundwiler-Pachlatko and Beck, 2013). These genes are sorted and targeted

through a specialized structure known as Maurer’s cleft formed in the host cytoplasm (Mundwiler-

Pachlatko and Beck, 2013). These genes are mostly kinases, proteases, and surface molecules, which

modulate the host and hijack the host machinery in favor of parasitic growth and host immune evasion

(Treeck et al., 2011; Li et al., 2012; Bougdour et al., 2014). The ‘other’ extracellular proteins consist

of surface antigens (e.g., MSPs), SERAs, TRAPs, AMA-1, microneme proteins, ROPs and RONs etc.

TEs
Repeat annotation was done by using the REPET pipeline (Flutre et al., 2011) and LTR finder (Xu and

Wang, 2007). The overall pipeline comprises of two steps: de novo detection and classification. In the

first step, the scaffolds are split into smaller batches (∼1000 batches of 200 kb each). These genomic

fragments were aligned against each other to detect the HSPs (High-scoring pairs) using BLASTER

(Quesneville et al., 2003). HSPs are then clustered using a combination of three methods such as

GROUPER (Quesneville et al., 2003), RECON (Bao and Eddy, 2002), and PILER (Edgar and Myers,

2005). Structure-based LTR retrotransposons (RTs) detection tools such as LTRharvest (Ellinghaus

et al., 2008) and LTR finder, which are based on 100–1000 bp long terminal repeats with a 1 kb–15 kb

separation and target site duplication site at vicinity of 60 bp to the two terminal repeats. These LTRs

detected are clustered using BlastClust. Multiple sequence alignment of each cluster was performed

using MUSCLE (Edgar, 2004). Each cluster aligned was searched against Repbase (Jurka et al., 2005)

using BLASTER (Quesneville et al., 2003) and HMMER (Johnson et al., 2010). A consensus feature

was detected for each aligned cluster. Further PASTEC (Flutre et al., 2011), which is based on the

Wicker classification, was used for consensus classification.
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The repeats were annotated as follows. The genomic chunks were randomized and HSPs were

detected using BLASTER (Quesneville et al., 2003), CENSOR (Jurka et al., 1996), and RepeatMasker

(Tempel, 2012). These HSPs were filtered and combined. Again, full-length genomic scaffolds were

compared to Repbase using MATCHER. Satellite and simple repeats were detected using the mreps

(Kolpakov et al., 2003), TRF (Benson, 1999), RMSSR (RepeatMasker). Finally, a long-join procedure

was followed to combine the nested repeats. The whole annotation was exported to a genome-

browser readable GFF3 file.

Clustering homologous genes
OrthoMCL 2.0 (Li et al., 2003) was used with a default inflation parameter (I = 1.5) (Chen et al., 2006)

to generate groups of homologous genes (defined as orthogroups), which could have homologs from

different species (putative orthologs) or from the same species (putative paralogs from gene

duplications). For some genes of high interest, we manually inspected the alignments of the protein

sequences within the orthogroup, which were done with MAFFT (Katoh and Standley, 2013). We

assigned Pfam domains to an orthogroup if more than half of the genes in an orthogroup were

assigned the Pfam domains.

Sub-cellular localization prediction
There are several tools available for a general eukaryotic sub-cellular localization prediction (Du et al.,

2011), but they are not applicable to alveolates due to its unique chloroplast membrane arising from

secondary endosymbiosis. Therefore, HECTAR (Gschloessl et al., 2008), which was developed for the

bipartite sub-cellular prediction, was used. There is no stand-alone version of HECTAR, and the online

version allows only one sequence at a time. We implemented a modified HECTAR algorithm as a PERL

script for batch prediction of the whole proteomes. Each protein sequence was predicted for signal

sequence using SignalP 3.0 (Bendtsen et al., 2004), the signal sequence is cleaved, and the remaining

amino acid sequence was used as input for the transit peptide prediction by TargetP (Emanuelsson

et al., 2000). Sequences with both signal peptide and the transit peptide (either chloroplast or

mitochondria) are predicted to be in the chloroplast. Sequences without the signal peptide but with

the transit peptide (either chloroplast or mitochondria) are predicted to be in mitochondria.

Sequences with signal peptide, without transit peptide, and predicted by TargetP to be secretory are

classified as secretory proteins.

For the RAP proteins, we tested the validity of our sub-cellular localization prediction in two ways.

First, we compared our in-house algorithm with other published tools: TargetP (Emanuelsson et al.,

2000), MitoProt2 (Claros and Vincens, 1996), iPSORT (Bannai et al., 2002), and PredSL (Petsalaki

et al., 2006) (Supplementary file 6, only mitochondrial prediction is shown). We found that our

mitochondrial prediction for RAP genes is in concordance with other methods. Second, we

experimentally verified mitochondrial localization in T. gondii by 3′ tagging of the endogenous

genes with the coding sequence for the hemagglutinin epitope for three RAP proteins that were

predicted to target to mitochondria with high probability.

Statistical analysis
A statistical environment software R was used for most of the analyses and generating parts of figures.

An R package vioplot was used to generate the violin plot (Hintze and Nelson, 1998). A ward

algorithm on the distance matrix based on (1- correlation coefficients) in an R function hclust was used

for all hierarchical clustering of gene expression patterns unless noted otherwise.

Evolutionary analysis
We compiled the reference proteomes of 26 alveolate and stramenopile species (Figure 1—source

data 2) from public databases such as EupathDB (Aurrecoechea et al., 2013) and NCBI Genome

database (http://www.ncbi.nlm.nih.gov/genome/).

We generated a phylogenetic species tree using a data set composed of 101 one-to-one

orthologs across the 26 species (see Figure 1—source data 1 for gene IDs). Amino acid

sequences were aligned using MAFFT (Katoh and Standley, 2013), highly variable sites were

edited by trimAL (Capella-Gutierrez et al., 2009) and after manual inspection. The resulting

alignment of 33,997 amino acid positions was used to construct trees by a maximum likelihood
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(ML) method and Bayesian inference. The ML tree was computed using RAxML 8.1.16 by gamma

corrected LG4X model (Stamatakis, 2014; Le et al., 2012). Robustness of the tree was

estimated by bootstrap analysis in 1000 replicates. Bayesian tree was constructed by PhyloBayes

(Lartillot and Philippe, 2004) using two-infinite mixture model CAT-GTR as implemented in

PhyloBayes 3.3f. Two independent chains were run until they converged (i.e., maximum observed

discrepancy was lower than 0.2), and the effective number of model parameters was at least 100

after the first 1/5 generation was omitted from topology and posterior probability inference. All

clades in the tree were supported with posterior probability 1.00 and 100% bootstraps, except

for one node, which representing the common ancestor of human Plasmodium spp. was

supported by 99% bootstrap.

We performed the gene gain and loss analysis based on Dollo parsimony using Count software

(Csuros, 2010). This approach allows reconstructing gene contents at observed species and at

hypothetical ancestors, and gene gains and losses at branching points. The Dollo parsimony strictly

prohibits multiple gains of genes. To test for validity of this assumption, we repeated analyses based

on parsimony settings allowing multiple gene gains or on a phylogenetic birth-and-death model

(Csuros, 2010) and reached the same conclusion (Figure 2—figure supplement 1). We have also

repeated the analysis using Wagner’s parsimony, allowing multiple gains per tree with gain penalty of

2 or greater, and obtained similar results (data not shown). For the analysis of metabolic enzymes,

endomembrane trafficking system components, and flagellar apparatus components, the ancestral

presence was inferred based on Dollo parsimony from the presence of components in the observed

species. For the endomembrane trafficking component analysis, we assumed that the last common

ancestor had a complete repertoire of the components.

We have inferred the evolutionary age of P. falciparum and T. gondii genes as the early node on

the phylogenetic tree where the most distant species have genes with significant sequence homology

(reciprocal BLASTP E value <10−10 and clustering with OrthoMCL).

Comparison of gene expression network between Chromera velia and
Plasmodium falciparum
We studied if orthologs of Chromera and P. falciparum show similar gene expression changes to

physiologically equivalent growth conditions. Identifying equivalent conditions is difficult as the

two species have completely different lifestyles and live in different environments. Instead,

we tested if a given gene and its ortholog would show correlated expression patterns with the

same set of genes (and orthologs), allowing a way to compare gene expression behavior

measured under different conditions. To uncover gene-to-gene co-expression relationships, the

organisms from whom transcriptomes are sampled must be exposed to various growth

conditions. This approach has been successfully used in other eukaryotes (Stuart et al., 2003;

Hu et al., 2010; Mutwil et al., 2011). For Chromera, we generated RNA-seq-based transcriptome

under combinations of varying salt concentrations, iron concentrations, and temperature

changes, resulting in 36 unique combinations (see ‘Materials and methods’ and

Figure 4—figure supplement 1C). For P. falciparum, we obtained previously published

microarray-based gene expression data sets of 144 unique conditions from 23 time series,

representing stresses from various growth-inhibiting compounds (Hu et al., 2010). It has been

shown that gene expression data generated using different molecular platforms are reproducible

and accurate enough for cross-platform comparisons (Woo et al., 2004). Based on each data set,

we calculated Spearman correlation coefficients rho between all possible pairs from the 1918

orthogroups shared between Chromera and P. falciparum (1918 × 1918 matrix). We also

calculated a 1918 × 1918 weighted adjacency matrix using CLR algorithm (Faith et al., 2007) as

implemented in an R package minet (with parameters of method = ‘clr’, estimator = ‘mi.shrink’,

and disc = ‘equalfreq’) (Meyer et al., 2008). Expression level of multiple genes in a given

orthogroup was averaged. To rule out any potential systematic biases associated with averaging

expression levels of homologous, yet distinct genes, we repeated some of the analyses with 1560

orthogroups that have one-to-one orthologs between the two species and reached the same

conclusions (data not shown). A pair of genes (or orthogroup) were determined as co-expressed if

the Spearman’s correlation coefficient rho is greater than 0.3 and if the value from the weighted

adjacency matrix of the network is greater than 0.01. We calculated an odds-ratio to measure the
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extent of conservation of co-expressed genes: (# of genes co-expressed in both species) × (# of

genes co-expressed in none of the species)/([# of genes co-expressed in P. falciparum only] × [# of

genes co-expressed in C. velia only]), and Fisher’s exact test was used to assess the statistical

significance. For calculation of the odds-ratios, co-expression was determined based on

correlation coefficient to minimize count granularity in the two-by-two table.
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Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA. 2008. A photosynthetic alveolate closely
related to apicomplexan parasites. Nature 451:959–963. doi: 10.1038/nature06635.

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and
pathway reconstruction server. Nucleic Acids Research 35:W182–W185. doi: 10.1093/nar/gkm321.

Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ,
Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G,
Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML.
2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926.
doi: 10.1126/science.1143837.

Morrissette NS, Sibley LD. 2002. Cytoskeleton of apicomplexan parasites. Microbiology and Molecular Biology
Reviews 66:21–38. doi: 10.1128/MMBR.66.1.21-38.2002.

Mullins RD, Stafford WF, Pollard TD. 1997. Structure, subunit topology, and actin-binding activity of the Arp2/3
complex from Acanthamoeba. The Journal of Cell Biology 136:331–343. doi: 10.1083/jcb.136.2.331.

Mundwiler-Pachlatko E, Beck HP. 2013. Maurer’s clefts, the enigma of Plasmodium falciparum. Proceedings of the
National Academy of Sciences of USA 110:19987–19994. doi: 10.1073/pnas.1309247110.

Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR, Usadel B, Nikoloski Z, Persson S. 2011.
PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. The
Plant Cell 23:895–910. doi: 10.1105/tpc.111.083667.

Nevin WD, Dacks JB. 2009. Repeated secondary loss of adaptin complex genes in the Apicomplexa. Parasitology
International 58:86–94. doi: 10.1016/j.parint.2008.12.002.
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Appendix 1

Genome characteristics.

The statistics of the genome assembly and annotation are shown in Supplementary file 1.

There was bacterial contamination in 20% and 80% of the sequence reads in Chromera and

Vitrella, respectively. There was a high amount of low-complexity DNA sequence repeats and

TEs in Chromera (Supplementary file 1). By various bioinformatics methods (‘Materials and

methods’), we generated assemblies containing 5953 and 1064 scaffolds for Chromera and

Vitrella, respectively. The total number of predicted genes differed between Chromera and

Vitrella primarily due to significant differences in TE gene content between the two chromerids

but the number of expressed genes was similar (Supplementary file 1).

We examined how genomes of the chromerids and other species were organized

(Supplementary file 1). The median gene length is roughly the same between the two

chromerids. The number of introns in a given gene was similar between the chromerids,

although the size of introns was larger in Chromera than in Vitrella (Supplementary file 1).

Compared to these chromerids, the number of introns in Apicomplexa was drastically less,

raising the possibility that introns were compacted and reduced during apicomplexan

evolution, which would need to be confirmed with further detailed investigation. For many

genes (13,912 and 17,569 respectively for Chromera and Vitrella), we were able to assign 5′ and
3′ UTRs, using strand-specific transcriptome (RNA-seq) data sets. The distance between the

protein-coding genes in Vitrella was short (median 92 base-pairs (bp)), indicating compactness

of its genome. On the other hand, such distance was longer in Chromera (median 989 bp).

Determining whether the common ancestor of chromerids had a compact genome or not

would require analysis of genomes from more closely related species. There are three possible

orientations by closely spaced neighboring genes can be clustered, that is, those with short

intergenic spaces between the gene boundaries: tandem, head-to-head, or tail-to-tail. In both

Chromera and Vitrella genomes, closely spaced (<1000 bp) genes were in head-to-head

orientation more often than expected by chance (data not shown). It was previously shown that

many neighboring genes in head-to-head clusters showed correlated expressions across

various conditions; however, most of the co-expressions were modest; instead, head-to-head

clustering is a major mechanism for stabilizing transcription of genes in fundamental cellular

processes rather than for co-regulating the two genes (Woo and Li, 2011; Russell et al., 2013).

Head-to-head clustering probably provided evolutionary and regulatory stability to genes

involved in fundamental cellular processes. Other related species had different gene

orientations, for example, the dinoflagellate Symbiodinium microtinum has tandem clusters

driven by tandem gene duplication (Shoguchi et al., 2013). Given the dynamic nature of

genome organization, we propose that different groups of species evolved different strategies

for genome organization (Woo and Li, 2011).

Repetitive sequences constitute a significant proportion of eukaryotic genomes (Fedoroff,

2012). Thus, they play a significant role in evolution of host genomes. Systematic TE clustering,

classification, and annotation were performed on 1064 Vitrella scaffolds (72.7 Mb

genome—72,700,666 bp) and 5953 Chromera scaffolds (193.6 Mb genome—193,664,168 bp)

Chromera. In both species, Class I elements (Tempel, 2012) make up a larger proportion of the

genome than Class II elements (Tempel, 2012) (Supplementary file 2). The RT domain

variation shows that Eimeria tenella TEs grouped separately and are not related to chromerid

TEs (Supplementary file 2), suggesting gains of TEs in E. tenella (Reid et al., 2014)

independently from chromerids. Vitrella forms a separate clade in the phylogenetic analysis of

the RT domains.
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Appendix 2

Metabolism.

Materials and methods

Reconstructing global metabolic map based on KEGG
Global metabolic pathways were mapped to KEGG metabolic pathways for the predicted

protein-coding gene sets for the 26 species. KEGG ortholog (KO) assignments for the

respective proteomes were made using the KO identification tools available on the KEGG

website (http://genome.jp/tools/kaas) (Moriya et al., 2007; Kanehisa et al., 2014), and then

the assigned KO numbers were used to identify and map metabolic pathways using the ‘Search

and color pathway’ tool available on the KEGG site (http://genome.jp/kegg/tool/map_path-

way2.html). The output of this mapping exercise was then manually inspected to compile the

set of enzymes present in all major metabolic pathways (Figure 2—source data 1).

As KEGG is very strict in mapping orthologs and assigning KO numbers (so as to minimize false

positives), we found numerous pathway holes (missing enzymes), many of which were readily

apparent as false negatives. In order to resolve this, we then resorted to identifying orthologs

from OrthoMCL-DB for all the genomes compared here (Chen et al., 2006). The resulting

ortholog assignments were then used to manually verify presence/absence of missing enzymes

for filling pathway holes where possible. This curated data, based on both KEGG and

OrthoMCL assignments, were used to generate the final mapping of enzymes to pathways, and

using this info a metabolic pathway network was drawn to represent all major pathways

involved in carbohydrate, energy, fatty acid, lipid, isoprene, steroid, amino acid, nucleotide,

cofactor, polyamine, and redox metabolism (Figure 2—figure supplement 3).

Based on the enzymes mapped, we calculated the completeness of metabolic pathways by

comparing the fraction of enzymes present for each pathway in each species. The complete set

of enzymes mapped to each pathway (originally taken from KEGG and further curated to

eliminate non-specific entries) is given in column B of Supplementary file 3. The fractional

values were then color-coded and the resulting data are shown in Figure 2B. In order to

visualize the retention, loss or gain of higher level metabolic functions, the fraction of enzymes

mapped to these pathways is indicated as a pie chart for hypothetical ancestors of selected

apicomplexan groups and chromerids (Figure 2B). We used presence of enzymes across the

species and the phylogenetic relationship to infer presence of enzymes in the hypothetical

ancestors based on Dollo parsimony (Csuros, 2010). Dollo parsimony is based on an

assumption that it is unlikely that the same enzymes were gained multiple times independently

in different lineages.

Phylogeny of heme pathway enzymes, the urea pathway CPS and
enzymes involved in fatty acid biosynthesis.
Predicted proteins from Vitrella (Chromera heme pathway is already published [Kořený and

Obornı́k, 2011; Kořený et al., 2011]) were searched for enzymes involved in the synthesis of

tetrapyrroles (aminolevulunuic acid [ALA] synthase, ALAS; ALA dehydratase, ALAD; Porpho-

bilinogen deaminase, PBGD; Uroporphyrinogen synthase UROS; Uroporphyrinogen decar-

boxylase, UROD; Coproporphyrinogen oxidase, CPOX; Protoporphyrinogen oxidase, PPOX;

and Ferrochelatase FeCH). All genes identified were aligned to the homologs available in

public databases such as NCBI and JGI using Muscle (Edgar, 2004), with the alignments further

edited in SeaView (Gouy et al., 2010). The results from these analyses are shown in

Supplementary file 4. The same procedure but searching in the predicted proteomes of both

chromerids was used to construct the alignment of carbamoyl phosphate synthases (CPS).

Genes coding for enzymes containing ketoacyl synthase domain were searched using BLAST.

Functional domains were searched using InterProScan (Zdobnov and Apweiler, 2001).

Phylogenetic trees of all investigated enzymes were constructed using the ML approach
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(RAxML [Stamatakis, 2014]), Bayesian inference (PHYLOBAYES [Lartillot and Philippe, 2004]),

and a method designed to deal with amino acid saturation (AsaturA [Van de Peer et al.,

2002]). ML trees were computed under the gamma corrected LG4X model of evolution as

implemented in RAxML 7.4.8a using the rapid-bootstrap optimization algorithm in 1000

replicates. Bayesian phylogeny was inferred using empirical site-heterogenous model C40 as

implemented in Phylobayes 3.2f. Two independent chains were run until they converged (i.e.,

maximum observed discrepancy was lower than 0.2), and the effective number of model

parameters was at least 100 after the first 1/5 generation was omitted from topology and

posterior probability inference.

AsaturA trees were computed using a Poisson corrected LG model and the support was

assessed from 1000 replicates. Sequences from Vitrella (all enzymes under investigation) and

Chromera (CPS and FAS enzymes) were inspected for the presence of N-terminal leader

sequences using SignalP (Bendtsen et al., 2004) and TargetP (Emanuelsson et al., 2007)

software respectively, suggesting targeting to either mitochondrion (with mitochondrial transit

peptide) or plastid (with bipartite leader composed of ER signal peptide and transit peptide).

Fatty acid synthesis pathway
C. velia cells were grown in the f2 medium. Cultures were kept in 25 cm2 flasks under artificial

light with photoperiod 12/12, light exposure between 70 and 120 μmol/m2/s and temperature

of 26˚C. 1 ml of C. velia stationary culture was added to each flask with 20 ml of f2 solution. The

cultures were grown for one month to reach a high density of cells. Since triclosan is not soluble

in water, dimethyl sulfoxid (DMSO) was used as a soluble mediator. Four experimental groups

were established: control, control with DMSO, Chromera treated with triclosan in concen-

trations of 1 mM and 0.5 mM, respectively. After 16 days of incubation, cultures were harvested

via centrifugation, and pellets were stored in −20˚C for subsequent lipid extraction.

Homogenization of algal sample was achieved by Mini-beadbeater (Biospec Products).

Homogenates were dried and weighted. Lipids were extracted using on chloroform and

methanol, as described before (Folch et al., 1957). An aliquot of 100 μl volume was subjected

to HPLC ESI/MS. The technique was performed on an ion trap LTQ mass spectrometer coupled

to Allegro ternary HPLC system equipped with Accela autosampler with the thermostat

chamber (all by Thermo, San Jose, CA, USA). 5 μl of sample was injected into a Gemini column

250 × 2 mm i.d. 3 μm (Phenomenex, Torrance, CA, USA). The mobile phase consisted of (A) 5

mmol/l ammonium acetate in methanol, (B) water, and (C) 2-propanol. The analysis was

completed within 80 min with a flow rate of 200 μl/min by following gradient of 92% A and 8% B

in 0–5 min, then 100% A till the 12th minute, subsequently increasing the phase C to 60% till

50 min and holding for 15 min and then in at the 65th minute returning back to the 92:8% A:B

mixture and 10 min to column conditioning. The column temperature was maintained at 30˚C.

The mass spectrometer was operated in the positive and negative ion detection modes at +4
kV and −4 kV with capillary temperature at 220˚C. Nitrogen was employed as shielding and

auxiliary gas for both polarities. Mass range of 140–1400 Da was scanned every 0.5 s to obtain

the full scan ESI mass spectra of lipids. For investigation of the lipid molecules structures the

collisionally induced decomposition multi-stage ion trap tandem mass spectra MS2 in both

polarity settings were simultaneously recorded with a 3 Da isolation window. Maximum ion

injection time was 100 ms, and normalized collision energy was 35%. Major phospholipids,

galactolipids, and neutral lipids molecular species that are detected were separated by

reversed-phase HPLC. The structure of each entity was identified by MS2 experiments in

positive or negative mode. Peak areas for each detected lipid component were summarized

and their relative contents estimated to sum of all obtained peaks.

Raw extracted lipids have to be transformed to methylesters of fatty acids (FAMEs) to enable

application of the GC technique. For this purpose sodium methoxide was employed as

a transesterification reagent, as previously described (Zahradnickova et al., 2014). FAMEs

were then analyzed by GC/FID. Hydrocarbon with 26-carbon chain was chosen as an internal

standard. The chromatography was performed using gas chromatograph GC-2014 (Shimadzu)

equipped by with column BPX70 (SGE)—0.22 mm ID; 0.25 μm film; 30 m length. μl of derivatized
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sample was injected via autosampler and injector AOC—20i (Shimadzu) to the column in split

mode (split ratio 10). The temperature of the injector was 220˚C. The starting temperature of the

column was 120˚C holding for 4 min. Then, the temperature increased to the 180˚C in at the rate

of 10˚C per minute, and after that 7˚C per minute to 230˚C. Temperature of the flame ionization

detector was 260˚C. The whole analysis takes took approximately 20 min. H2 was used as

a carrier gas. For the identification of particular FAs, a mixture of 37 standards purchased from

Supelco Inc. was used.

Results and discussion

Global metabolic map
Metabolic annotations based on ortholog assignments with KEGG and OrthoMCL database

showed that chromerids contain all major primary metabolic pathways typically found in free-

living unicellular eukaryotes (Figure 2—figure supplement 3). 2918 Chromera proteins and

2985 Vitrella proteins were assigned KO numbers, from which 432 Chromera (1.3% of

proteome) and 425 Vitrella proteins (1.8% of proteome), respectively, were identified as

enzymes with a metabolic function based on EC number association.

In support of their autotrophic lifestyle, the chromerids appear to be capable of generating de

novo all primary carbon metabolites such as the various sugars and other reduced carbon

compounds (presumably via photosynthesis and associated carbon fixation pathways), amino

acids, nucleotides, fatty acids and lipids, isoprene and steroid derivatives, and most vitamins

(except biotin and vitamin B12). These organisms are also capable of assimilating both nitrate

and sulfite and can generate energy from photosynthesis as well as mitochondrial respiration. A

full complement of enzymes involved in sugar and sugar derivative metabolism, such as

glycolysis, Kreb’s cycle, pentose phosphate pathway, inositol mono- and poly-phosphate

formation, polysaccharide formation, and amino- and nucleotide-sugar formation, is encoded

by the chromerids. Chromerids are also capable of synthesizing sulfoquinovosyl-diacyl-glycerol

lipids, which are found associated with the chloroplast in photosynthetic organisms.

Figure 2—figure supplement 3 illustrates a complete representation of all major pathways

mapped to chromerids in comparison to selected apicomplexan lineages.

Generally, Chromera and Vitrella have similar sets of metabolic enzymes. Enzymes for the

oxidative arm of pentose phosphate pathway, conversion of diacyl-glycerol to phosphatidyl

ethanolamine, phosphatidyl ethanolamine to phosphatidyl serine, and XppppX to XTP are

absent in Chromera, while, on the other hand, the enzymes involved in conversion of glucose-

1P to UDP-glucose, and cytidine to uridine are missing in Vitrella. One major difference

between the two chromerids is that the complex III of the mitochondrial respiratory chain

(cytochrome c reductase) is missing in Chromera, but present in Vitrella (Flegontov et al.,

2015). This feature of the Chromera mitochondrion, that is, absence of complex III but

presence of complex IV, makes it unique among all mitochondria and mitochondria-derived

organelles.

The crucial enzyme for the urea pathway, mitochondrially targeted carbamoyl phosphate

synthase (CPS) (Allen et al., 2011), is absent from both chromerids. However, while Chromera

contains single CPS involved in pyrimidine biosynthesis, Vitrella genome encodes two CPSs.

But both these genes are closely related suggesting they are recent duplicates (ML tree is

shown in Figure 2—figure supplement 2A) and they lack a mitochondrial leader sequence at

the N-terminus (data not shown). This means that Vitrella duplicated CPSs are not likely to be

involved in urea cycle. In contrast to Vitrella, Chromera lacks the gene encoding

argininosuccinate lyase (ASL), an enzyme of the ornithin cycle.
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Plastid-related metabolic pathways
Chromerid photosystems have a reduced set of genes similarly to that of other algae with

a complex plastid. The patterns of reduction were lineage-specific, even between the two known

chromerids. We found psbM, petN, psaJ, Psb27, Ycf4, and Ycf44 genes in Vitrella but absent in

Chromera; vice versa, Ycf39 and Ycf54 are absent in Vitrella but present in Chromera

(Supplementary file 3). This demonstrates that the plastid of Chromera is more diverse and

reduced when compared to Vitrella with respect to both the composition of photosystems and the

number of genes encoded in the plastid genome (Janouškovec et al., 2010). In spite of substantial

reduction of photosystems, photosynthesis in Chromera is highly efficient (Quigg et al., 2012).

The heme pathway in Vitrella is homologous to that found in Chromera (Kořený et al., 2011) for

most of the involved enzymes (ALAS, ALAD, PBGD, UROS, PPOX), however, Vitrella and

Chromera do not constitute sister groups in the CPOXs and FeCH trees (trees not shown). Some

enzymes are not present in single copies (UROD) in Vitrella, in contrast to Chromera, where three

orthologs originating from cyanobacteria, endosymbiont nucleus, and exosymbiont nucleus are

present (Kořený et al., 2011). For some investigated enzymes (UROS, UROD, CPOX), only the

endoplasmic reticulum signal peptide was found with transit peptide missing from the sequence,

suggesting their possible location in the endoplasmic reticulum or periplastidal space.

Genes containing the ketoacyl synthase domain and thus likely involved in fatty acid or

polyketide synthesis were searched in the genomes of chromerids. We found that both algae

possess multi-modular enzymes responsible for fatty acid synthesis type I (FASI), similar to some

apicomplexan parasites, such as Cryptosporidium spp. and T. gondii. The longest multi-

modular enzyme found in Chromera contains five multi-domain modules, reaching over 11,000

amino acids in length (Figure 2—figure supplement 2B).

Evolution of metabolic pathways
Apicomplexan parasites differ drastically from each other in their metabolic functions, and have

a significantly reduced metabolic capability in comparison to the chromerids. Apicomplexans are

non-photosynthetic and therefore lack all associated metabolic activities including photosyn-

thetic carbon fixation. Interestingly, however, all plastid-bearing parasites have retained only the

ferredoxin-NADP+ reductase (FNR)/ferredoxin redox system of the photosynthetic electron

transport (Lim and McFadden, 2010). In photosynthetic organisms, this redox system mediates

the transfer of electrons originating from water to NADP+, resulting in the formation of NADPH

(cofactor for fatty acid biosynthesis and Calvin cycle), and it is likely that this role is conserved in

chromerids. In apicomplexans, the source of electrons for generating reduced ferredoxin is not

clear, but it is evident that reduced ferredoxin is required for generating reducing equivalents

and is a cofactor for several plastid-associated enzymes, including those involved in isoprene

synthesis (Lim and McFadden, 2010). Other notable pathways missing in apicomplexans but

present in the chromerids include the following: glyoxalate pathway; steroid biosynthesis;

synthesis of aromatic and branched-chain amino acids; purine synthesis; and synthesis of

cofactors such as thiamine, riboflavin, and nicotinate ribonucleotide.

Despite the reduced metabolic capabilities, certain core metabolic functions are conserved in

chromerids as well as in all apicomplexan parasites, and many of these are likely to be essential.

These pathways include: glycolysis; synthesis of ubiquinone, inositol-P derivatives, GPI-anchor,

mono-, di- and tri-acyl glycerol, isoprene derivatives, and N-glycans; a subset of scavenge

reactions for purine and pyrimidine bases and their conversion to nucleotides; glycine–serine

inter-conversion; one-carbon folate cycle and S-adenosyl-methionine formation. There are

many metabolic pathways that are retained in specific apicomplexan lineages but shared with

the chromerids (see Figure 2B and Figure 2—figure supplement 3). The following are notable

examples of pathways shared between chromerids and a apicomplexan lineage: with

Plasmodium, polyamine synthesis; with Cryptosporidium, conversion of serine to tryptophan;

with Toxoplasma, branched-chain amino acid degradation, synthesis of aspartate, lysine, and

methionine; synthesis of molybdopterin, biopterin, pyridoxal-phosphate, and pantothenate
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cofactors. Surprisingly, with respect to the chromerids and other apicomplexans, Cryptospo-

ridium appears to be the only apicomplexan lineage to have gained a metabolic function of

conversion of thymidine to dTMP by thymidine kinase. In addition, the type I and II pathways for

fatty acids biosynthesis show lineage-specific distribution in apicomplexans and chromerids

(Figure 2—figure supplement 3).

We can also find example of pathways that have been lost in a lineage-specific manner. For

example, the ability to synthesize the di-saccharide trehalose is missing only in Plasmodium.

However, the most dramatic loss of metabolic function in a single lineage can be found in

cryptosporidia. These parasites are devoid of all plastid- and mitochondria-associated

metabolic functions and other pathways involved in the synthesis of ribose-P, pyrimidine, most

amino acids, heme, fatty acids (de novo), and isoprene units. It seems that the lack of

mitochondrial oxidative pathways in cryptosporidia led to loss of the ability to generate flavin

nucleotide (FMN/FAD) and lipoic acid cofactors.

In order to cope with loss of metabolic pathways, parasites have evolved various mechanisms

for scavenging the required nutrients and metabolites from their respective hosts. For example,

metabolites such as heme, fatty acids, steroids (specifically cholesterol), and sphingolipids are

known to be scavenged by various apicomplexans as needed from their respective hosts.

According to the metabolic pathway maps, certain metabolic functions, which are coupled to

each other, have been either retained or lost concomitantly in various species

(Figure 2—figure supplement 3). For example, piroplasms and cryptosporidia lack de

novo fatty acid biosynthesis along with the pyruvate dehydrogenase enzyme complex (plastid-

associated in apicomplexans), which is known to supply acetyl CoA units for fatty acid synthesis.

On the other hand, these parasites have retained the ability to convert pantothenate to

co-enzyme A, which is required for the activation of fatty acids scavenged from the hosts

(Leonardi et al., 2005). Similarly, activities of the serine hydroxyl methyl transferase and

thymidylate synthase enzymes are coupled to each other and to one-carbon folate metabolism.

Therefore, these three metabolic functions are retained in all parasites.
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Appendix 3

Endomembrane trafficking system.

Materials and methods
The predicted proteomes of the 26 species in Figure 1 have been searched for endomembrane

trafficking components. Initial homology searching was carried out using BLAST (Altschul et

al., 1990). Known sequences from human (Homo sapiens) and yeast (Saccharomyces cerevisiae)

were used to search the proteomes of each organism including Chromera and Vitrella to

identify potential homologs of proteins implicated in endomembrane trafficking. Any

sequences scoring an initial E value of 0.05 or lower were subjected to confirmation by

reciprocal BLASTP. This involved the use of candidate homologous sequences as queries

against the relevant H. sapiens or S. cerevisiae genome. Sequences that retrieved the query

sequence, or named homologs/paralogs/isoforms thereof, first with an E value of 0.05 or lower

were considered true homologs.

Additional searches were carried out using HMMER (Finn et al., 2011). The HMMs for the initial

queries were built and used to search each proteome. Top hits based on BLASTP results with E

values less than 0.05 were considered confirmed homologs, and not subjected to further

analysis. Subunits with significant HMMER hits were further investigated by the reciprocal

BLASTP as described above. Further HMMER searches were carried out with the addition of

homologous sequences from Bigelowiella natans, Phytophthora infestans, and T. gondii to the

original HMMs. Results were analyzed identically to the first round. All identified endomem-

brane components are listed in Figure 2—source data 2.

To identify homologous proteins not predicted by the gene prediction software, we used

TBLASTN with the homologous protein from the closest related organism in our data set

against scaffolds and contigs; E value cut-off was identical to BLASTP analysis. We utilized

BLASTP to search either genome with an identified homolog from the other, if it was present.

The final results are summarized in Figure 2—figure supplement 4 using the Coulson Plot

Generator software (Field et al., 2013).

Results and discussion

Apicomplexa possess numerous unusual features in their membrane trafficking systems. Non-

canonical membranous inclusions such as the invasion organelles, the micronemes, rhoptries,

and dense granules are present (Baum et al., 2008). Though canonical, stacked, Golgi bodies

are present in T. gondii (Pelletier et al., 2002), other apicomplexan species possess Golgi

bodies with aberrant morphology and unusual characteristics (Struck et al., 2008). Combined

with other organelle destinations such as mitochondria, digestive vacuoles involved in

hemoglobin catabolism in P. falciparum, and plant-like lytic vacuoles in T. gondii

(Miranda et al., 2010), specificity of protein and lipid components of these various organelles

suggest a need for unique trafficking pathways mediated by distinct protein machinery.

Interestingly, previous studies demonstrated the loss of trafficking machinery in Apicomplexa,

including three key sets of proteins in the ESCRT machinery (Leung et al., 2008), adaptor

protein complex (AP) families (Nevin and Dacks, 2009; Hirst et al., 2011), and multi-subunit

tethering complexes (MTCs) (Koumandou et al., 2007; Klinger et al., 2013a) have been

published. Several of the aforementioned families are involved in trafficking within the late

endosomal system in opisthokont models and so may be associated with the evolution of the

rhoptries and micronemes within the apicomplexan or myzozoan lineage. Consistent with this
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idea, some cases of reduction were not limited to Apicomplexa, and could be observed in the

sister phyla of the ciliates and dinoflagellates.

This pattern of loss raises the question of what losses correlate with the transition to parasitism

and which are pre-adaptive, arising more deeply in the lineage. The unique phylogenetic

position of chromerids (Janouškovec et al., 2010, 2012; Obornı́k et al., 2012) allows finer

dissection of the patterns of retention/loss observed previously. Hence, we chose to focus on

detailed characterization of the three previously studied sets of membrane trafficking

machinery in the predicted proteomes of Chromera and Vitrella, together with 24 closely

related organisms for comparison.

ESCRT machinery
The ESCRT machinery is a set of five sub-complexes involved in recognition of ubiquitylated

proteins and recruitment to the multi-vesicular body (MVB)/late endosome for degradation

(Leung et al., 2008). Most eukaryotes, including Chlamydomonas reinhardtii and our

representative stramenopile taxa (Thalassiosira pseudonanna, Phaeodactylum tricornutum,

Ectocarpus siliculosus, and Pythium ultimum), have a complete set of the ESCRT machinery,

suggesting that the ancestor of alveolates, and indeed the Last Eukaryotic Common Ancestor

(LECA), likely had it. Though this ancestral complement appears to have been reduced in

ciliates in the ESCRTI and III complexes, and a few components are missing from dinoflagellate

taxa, numerous gene duplications have occurred as well, suggesting sculpting of the

machinery. By comparison, apicomplexan parasites exhibit significant reductions in their ESCRT

machinery (Leung et al., 2008). Cryptosporidia, coccidia, and plasmodia appear to lack any

subunits of the ESCRTI and II complexes. ESCRTIII conservation is better, though no

apicomplexan encodes Vps24, and multiple taxa have lost Vps20 as well. A similar pattern is

seen for the ESCRTIII-a machinery, with piroplasmids encoding only Vps46 and Vps4. Coccidia

additionally encode Vps31, and cryptosporidia Vps60, whereas plasmodia encode all subunits

(rodent parasites like Plasmodium chabaudi), or lack Vps31 (human or simian parasites like P.

falciparum). Chromera and Vitrella possess all ESCRT subunits except for the ESCRT-III

component CHMP7, which is rarely found outside the opisthokont supergroup

(Leung et al., 2008). This observation suggests two conclusions regarding the evolution of the

ESCRT machinery within alveolates: massive gene loss within the Apicomplexa occurred

recently, after the split from the proto-apicomplexan ancestor, and some losses of machinery

shared between apicomplexans and other alveolates are due to independent losses. An

excellent example of this latter case is that of Vps37, which is present only in chromerids, but in

no other alveolate included in the current study, suggesting its function was dispensable in

a large number of lineages.

APs
The APs are heterotetrameric complexes that select cargo for inclusion into transport vesicles at

organelles of the late secretory system and endocytic system. AP1 and AP3 are involved in the

transport between the trans-Golgi network (TGN) and endosomes. AP2 is involved in the

transport from the cell surface. AP4 is involved in TGN transport to either endosomes or the cell

surface, while the recently described AP5 complex is involved in the transport from late

endosomes back to early endosomes. All five complexes are ancient, having likely been present

in the LECA (Nevin and Dacks, 2009; Hirst et al., 2011). However, the complexes have also

been secondarily lost on multiple occasions as well. Outgroup taxa in our data set possess

AP1-4 complexes, with the exception of C. reinhardtii lacking AP3, but only Symbiodinium

minutum possesses an AP5 complex.

Apicomplexa display higher variability in AP complex retention. With the exception of AP2M in

cryptosporidia, all taxa retain full AP1, 2, and 4 complexes. Piroplasms lack all subunits of the

AP3 complex, and together with P. falciparum and Plasmodium reichenowi, lack AP5 as well.

Other plasmodia possess all AP5 subunits with the exception of the mu subunit. This result was

unexpected, based on the usual patterns of conservation seen across Plasmodium species.
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Presence of AP5 in the majority of these organisms suggests the exciting possibility of a novel

trafficking pathway absent from the comparatively well-studied human parasite P. falciparum.

Additionally, our increased taxon sampling has suggested that AP5 may be well conserved

across Myzozoa, a result otherwise indeterminable from previous studies of this protein family

(Hirst et al., 2011). Cryptosporidia also lack AP3, but unlike piroplasmids, they possess almost

a complete AP5 complex, missing only the sigma subunit. Coccidia are the exception,

possessing all five AP complexes in their entirety. Excitingly, Chromera and Vitrella, like

coccidia, possess a complete complement of adaptin subunits, suggestive of a more complete

set of trafficking pathways to endosomal organelles in these organisms.

MTCs
The MTCs are an assembly of heteromeric protein complexes involved in the first stage of vesicle

fusion and delivery of contents from a transport vesicle to a destination organelle. Each one is

specific to an organelle or transport pathway and all eight complexes have been deduced as

present in the LECA, with some interesting cases of secondary loss. While C. reinhardtii and the

stramenopiles encode a complete set of MTC machinery, several of these MTCs have interesting

patterns of conservation, specifically in the Apicomplexa (Klinger et al., 2013a).

The conservation of the TRAPP I–II complexes is unclear through eukaryotes and clear patterns

are difficult to draw. However, the apparent absence of the entire TRAPPII complex in Vitrella

may be due to gaps/biases/absences in sequencing, protein prediction, or analysis, but has

interesting ramifications if proven to be a real biological phenomenon.

Exocyst is involved in diverse processes, all of which involve polarized exocytosis (Liu and Guo,

2012). Tetrahymena appears to encode only four of the Exocyst subunits. None of the eight

subunits were identifiable in Chromera, Vitrella, nor in any of the Apicomplexa or

dinoflagellates. This confirms, and extends, a previous result suggesting the absence of this

complex within the Myzozoa, suggesting a bona fide ancestral loss concurrent with the

acquisition of an apical complex that could have served an analogous tethering function for

secretory organelles.

COG is an octameric complex involved in tethering at the Golgi body (Tomavo et al., 2013;

Klinger et al., 2013b). The COG complex is poorly conserved in Apicomplexa and a ciliate

Tetrahymena thermophila only encodes half of the COG subunits. In contrast, all eight COG

subunits are present in Chromera and Vitrella. The retention of a complete COG complex in

both Chromera and Vitrella contrasts with the substantial loss of subunits in Apicomplexa,

especially outside the coccidians (Klinger et al., 2013b) (Figure 2—figure supplement 4).

Notably, this conservation is consistent with the presence of robust, stacked Golgi bodies in

Chromera (Obornı́k et al., 2011) and T. gondii (Pelletier et al., 2002), compared to aberrant

morphology in other Apicomplexa.

The complexes of CORVET and HOPS mediate tethering at the early and late endosomes

(Tomavo et al., 2013; Klinger et al., 2013b). They share a core of four subunits with complex-

specific proteins (Vps3 and 8 for CORVET and Vps39/41 for HOPS). Though all taxa encode the

complete VpsC core of the HOPS/CORVET complex, all taxa except for T. gondii only appear

to encode the CORVET-specific interactor Vps3. Chromera and Vitrella, like Apicomplexa,

possess the entire VpsC core complements as well as the HOPS component Vps41 and both

CORVET components.

Chromerids exhibit complex life cycles, from immotile vegetative cells to multi-cellular

sporangia, and occasionally motile flagellated cells. Both lineages contain numerous potential

locales for intracellular trafficking including mitochondria, plastid, starch granules, flagella,

micronemes, and, in Chromera, the chromerosome. Additionally, vesicular traffic to the

sporangial/cyst wall has been visualized in both lineages (Obornı́k et al., 2012). Our results

indicate that chromerids possess an appropriately complex complement of membrane

trafficking machinery to achieve these requirements.
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Though MVBs have not been explicitly imaged or characterized in either lineage to date, both

Chromera and Vitrella encode a complete set of ESCRT machinery, suggestive of the presence

of functional MVBs. These may play a key role in modulating surface protein expression in

various life cycle stages. Importantly, the close evolutionary position of Chromera and Vitrella to

Apicomplexa suggests that the extensive decrease in ESCRT subunit conservation in

Apicomplexa occurred in the immediate ancestor and is not an ancestral feature of a more

inclusive group (Leung et al., 2008) (Figure 2—figure supplement 4). Particularly, the lack of

some ESCRT subunits such as Vps37 in ciliates and dinoflagellates is most parsimoniously attributed

to multiple independent losses. Further evidence for a complete set of ESCRT machinery in the last

common alveolate ancestor comes from the conservation of all subunits to the exclusion of CHMP7

in the outgroup stramenopile taxa and in C. reinhardtii. The absence of CHMP7 in all taxa is not

unusual, as it is lost in numerous taxa across eukaryotes (Leung et al., 2008).

Conservation of adaptin subunits is striking, particularly the complete retention of AP5 in

chromerids. In an initial study of seven organisms from the SAR supergroup (the group in which

chromerids belong to), only two (B. natans and T. gondii) were found to encode the complex;

conservation across eukaryotes was similarly sparse (Hirst et al., 2011). The presence of

a complete AP5 complex in chromerids and coccidians may be indicative of a conserved

function in both lineages. Likewise, the retention of an almost complete AP5 in cryptosporidia

and plasmodia may have functional significance or may simply represent a reductive

evolutionary process that has not yet reached completion. The complete lack of AP5 in P.

falciparum and P. reichenowi supports the latter view. As with the ESCRT complexes, the

presence of AP1-5 in chromerids suggests the loss of AP3 and AP5 observed in some

Apicomplexa is secondary, as well as the loss of AP5 in Perkinsus marinus, and in both ciliate

lineages.

Presence of a complete VpsC core along with an additional CORVET subunit Vps3 in the

majority of apicomplexan genomes suggests the potential for a modified HOPS/CORVET

complex that interacts with Rab5 to direct tethering at the micronemes/rhoptries. This is in

keeping with the view of rhoptries/micronemes as divergent endolysosomal organelles

(Klinger et al., 2013b). However, chromerids do not appear to possess rhoptries, although

chromerids possess cellular components analogous to micronemes (Obornı́k et al., 2011,

2012). More HOPS/CORVET subunits were found to be conserved in T. gondii, which are the

only apicomplexan to date to be described as possessing a canonical lysosome-like

compartment5, suggesting that complete complexes are retained in these lineages because

they are required for trafficking to canonical lysosome-related organelles as well. Additionally,

Chromera possesses the chromerosome, which often displays intralumenal vesicles similar to

MVBs, suggesting it may also be derived from endosome-like organelles (Obornı́k et al.,

2011).

In conclusion, apicomplexans possess unusual endomembrane compartments including

atypical Golgi and endosome-derived invasion organelles such as micronemes and rhoptries

(Klinger et al., 2013b). Modifications in the complement of membrane trafficking machinery,

including the loss of key protein complexes found in most eukaryotes, have been observed in

the apicomplexan lineage, potentially associated with the specialization of the endomembrane

system. The absence of some components (Exocyst, Vps39, Trs120, Tip20) within Chromera and

Vitrella suggests pre-adaptation to parasitism deeper in the apicomplexan lineage. By contrast,

the presence of near complete complements of key machinery (AP1-5, ESCRTs, COG) absent in

many apicomplexans, pinpoints the timing of the losses at the colpodellid/apicomplexan

transition.
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Appendix 4

Apical complex and cytoskeleton.

Motility is an essential feature of many living organisms. Some organisms utilize microtubule-

based specialized structures such as flagella and cilia for locomotion. Some use actin-based

structures like filopodia, lamellipodia, and pseudopodia (Frenal and Soldati-Favre, 2009),

which are exploited in the amoeboid crawling (Pollard and Borisy, 2003) or bacterial and viral

movement into and between cells (Stevens et al., 2006). Apicomplexan parasites use an

unconventional actin-based mode of locomotion known as gliding motility (Morrissette and

Sibley, 2002). This mechanism allows the parasites to move fast in the absence of canonical

microtubular and actin-based structures. Gliding motility is mediated by the apical complex, which

is a cellular structure common to all apicomplexan parasites. In the apical complex, proteins

secreted from specialized secretory organelles, microneme and rhoptries, mediate adhesion to the

cell substrate during motility and invasion or formation of a PV (Baum et al., 2006).

Actin-based gliding motility is essential for apicomplexan invasion (Skillman et al., 2011).

Apicomplexan gliding motility undergoes actin polymerization/depolymerization for their

directional motility with other associated protein classes such as actin-like proteins (ALP), actin-

related protein (ARP), capping protein (CP), formin, profilin and cofilin/ADF. Actins elongate in

the form of filaments and push the membrane forward. Arp2/3 complex (one of the ARPs)

mediates the initiation of new branches on pre-existing filaments. After some growth, CP

terminates the elongation of the filaments. Cofilin/ADF promotes de-branching and de-

polymerization. Profilin mediates the refilling of ATP-actin monomer pools, which are used for

elongation through catalyzing ADP-ATP exchange (Baum et al., 2006; Foth et al., 2006).

We identified and compared genes encoding actins and other related components in the 26

species according to a method described by a previous study (Baum et al., 2006). Chromerids

share homology with Apicomplexa for most of the actin, ALP and ARP classes. For example,

both chromerids possess actin 1 (ACT1), actin-related (ARP), and actin-like (ALP) homologs.

There were fewer actin genes in apicomplexans than in chromerids, indicating losses during

apicomplexan evolution. The patterns of losses were the same for closely related species,

suggesting non-random, lineage-specific losses (Figure 2—figure supplement 5C).

Arp2/3 complex, a nucleator of actins (Machesky et al., 1994), consists of seven subunits that

regulate actin polymerization (Mullins et al., 1997; Fehrenbacher et al., 2003). Initially

identified in Acanthamoeba (Machesky et al., 1994), Arp2/3 complex is conserved in most

eukaryotes (Gordon and Sibley, 2005). We could not identify genes encoding subunits of

Arp2/3 complex in both chromerids (Figure 2—figure supplement 5C). Also, all subunits were

not found in apicomplexan species, consistent with a previous study (Gordon and Sibley,

2005). Individual subunits are important, as subunit ARPC4/p20 was shown to be essential for

a complete, functional Arp2/3 complex (Gournier et al., 2001). Different subunits were

identified in different phyla (Figure 2—figure supplement 5C). Within Apicomplexa, ARPC1

and ARPC4 were present in Cryptosporidium hominis and Cryptosporidium parvum, and

ARPC1 and ARPC2 in Plasmodium spp. S. minutum, a dinoflagellate, contains genes for most of

the subunits except ARPC1. This suggests that the common ancestor of Myzozoa (chromerids,

apicomplexans, and dinoflagellates) had all the subunits, and they were lost in different

lineages. Genes encoding ALP1, hypothesized to function as Arp2/3-like nucleator (Gordon

and Sibley, 2005), were found in apicomplexans and also in Vitrella (Vbra_266.t1). FH2-domain

(Pfam-PF02181) containing formins are members of another actin nucleator gene family. They

produce unbranched filaments unlike Arp2/3 complex, which induces branched filaments. Both

chromerids possess formin1 (FRM1) and formin 2 (FRM2) homologs, which are conserved in all

the other studied species as well. Although Plasmodium spp. maintained a 1-1 orthology for

both FRM1 and FRM2, we found a coccidian-specific FRM3 (TGME49_213370), suggesting

a lineage-specific expansion. Maintenance of some formins across chromerids and
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apicomplexans and lack of Arp2/3 complex suggest their importance, perhaps reflecting

a switch from Arp2/3 complex to formins for actin nucleation during the evolution of

Apicomplexa. Taken together, it seems that an Arp2/3 independent actin nucleation

mechanism had already evolved before Apicomplexa and chromerids, and losses of ARP have

probably begun too, although inferring the exact timing and sequence of losses will require

studying more closely related species such as Colpodella.

We analyzed coronins, a major conserved gene family with a multifunctional role in actin

regulation and vesicular transport (Rybakin and Clemen, 2005). These are WD40-repeat

containing proteins, which represent the only candidate for actin bundling in apicomplexan

parasites. Coronins inhibit the nucleating activity of Arp2/3, unlike other known Arp2/3-binding

proteins. We observed absence of coronins in both chromerids, which is consistent with the

notion that they, functionally linked to the Arp2/3 complex, were lost (Figure 2—figure

supplement 5C). Although parasite homologs do not have the microtubule-binding domain of

canonical coronins, but essential amino acid residues are conserved (Gandhi et al., 2010).

Thus, coronin could be playing a role in stabilizing F-actin scaffolds or having an alternative role

in vesicular transport in apicomplexan parasites.

Profilins are actin-binding proteins that supply pools of readily polymerizable actin monomers

(Baum et al., 2006). Genes encoding profilins were found in all 26 species studied except for an

oomycete (P. ultimum) and diatoms (P. tricornutum, Thalassiosira pseudonana). Apicomplexa-

specific profilins have βmini1 and βmini2 domains, which provide an extended interface with

actin and formed the structural basis of their actin-binding function in Toxoplasma (Kucera

et al., 2010) and Plasmodium (Kursula et al., 2008). These domains are not found in other

eukaryotes. Sequence alignment of these profilins reveals an intriguing observation that Vitrella

(Vbra_7301.t1) had these β-domains previously thought to be specific to Apicomplexa, with

partial conservation in Chromera (Cvel_18957.t1) and in dinoflagellate P. marinus

(XP_002774080). The β-domains were not detected in other non-apicomplexan species. All

species studied has had only one profilin gene except for chromerids where we observed 2 in

Chromera and 3 in Vitrella, including an one-to-one ortholog of the apicomplexan profilin in

both chromerids.

Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins, which

participate in filament turnover regulation by acting on actin monomers (Chaudhry et al.,

2010). CAP proteins are made up of three significant regions: N-terminal adenylate cyclase

binding domain (CAP_N, linked to the cAMP-RAS signaling), a central proline-rich segment,

and a C-terminal actin-binding domain (CAP_C). Apicomplexans do not possess the N-terminal

(CAP_N) domain altogether with few genes in stramenopiles and in Vitrella (Vbra_7026.t1) also

showing a similar pattern of loss. However, the Chromera gene Cvel_8488.t1 possesses both

domains. This suggests the dispensable nature of CAP_N domain (Figure 2—figure

supplement 5C), and we speculate that in parasites CAP functions are reduced to actin

sequestration only.

The F-actin capping, CapZ duplex, a dimer of α- and β-CPs, prevents polymerization from the

‘barbed’ (plus) end. It is conserved across Apicomplexa except for in piroplasms. It is also

conserved in most of the species studied including stramenopiles, dinoflagellates, and both

chromerids. In Apicomplexa, several gelsolin domain-containing proteins were found but they

are unlikely to be functionally related and are speculated to be Sec23/Sec24-like proteins,

which function in vesicular transport (Baum et al., 2006).

Cofilin/ADF genes promote de-branching of actin filaments and are well conserved among

species studied. However, plasmodia differ from the rest of the Apicomplexa species in having

an additional copy of the ADF gene. Phylogenetic analysis shows that ADF in plasmodia has

duplicated and diverged with respect to the rest of the Apicomplexa, and recent structural

studies explain the mechanism of action of Plasmodium ADFs (Singh et al., 2011; Wong et al.,

2014). This represents a clear example of additional innovations of actin regulation in certain

apicomplexan clades.
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In addition, we identified myosin families in the 26 species using a myosin HMM model

(Foth et al., 2006) (Figure 2—figure supplement 5C). Members of piroplasmids such as

Theileria annulata and Theileria parva have the fewest genes among the apicomplexan species

examined, likely because piroplasms do not require motility for intracellular invasion. On the

other hand, we detected the most complete myosin family repertoire in Chromera and Vitrella.

We detected certain myosin families in some apicomplexan genera, but not among non-

apicomplexan species, indicating lineage-specific gains (data not shown). In summary,

combinations of lineage-specific losses and gains have led to streamlined, unique repertoires

of actins and myosins in various apicomplexan species.
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Appendix 5

Extracellular proteins in chromerids.

We curated the chromerid genomes for genes with extracellular domains and domain

architectures like similar to those of apicomplexans (Figure 3—figure supplement 4;

Supplementary file 5). Both chromerids possess mucin-like proteins having long stretches of

threonine and serine residues with predicted O-linked glycosylation, as well as the enzyme

pathways involved in O-linked glycosylation (Templeton et al., 2004a; Anantharaman et al.,

2007). Proteins encoding combinations of von Willibrand factor A (vWA) and thrombospondin

1 (TSP1) were also observed, although none with apparent orthologous relationship to the vWA

and TSP1 domain proteins (TRAP) that serve as receptors mediating gliding motility in

apicomplexans. The chromerid genomes possess numerous secreted proteins with domains

predicted to participate in binding of sugar moieties (Figure 3—figure supplement 4).

Chromerids share FRINGE domains with Cryptosporidium, and HINT domains with

Cryptosporidium and Gregarina, to the exclusion of other apicomplexans, in support of early

divergence of these genera within the Apicomplexa (Figure 3—figure supplement 4B). Vitrella

genome contains multiple copies of proteins, which have arrays of the cysteine-rich oocyst wall

protein (OWP) domain found in Cryptosporidium and coccidians, which are associated with

forming environmentally durable walls of oocysts (Templeton et al., 2004b).

Several EC domain architectures thought to be distributed apicomplexan-wide have homologs

in the chromerids; for example, the LCCL domain-containing proteins, CCp1 and CCp2/3, as

well as the CPW-WPC domain proteins (Figure 3—figure supplement 4C). Ultrastructures

reminiscent of micronemes have been observed in both chromerids (Obornı́k et al., 2012);

consistent with this, we identified EC proteins having domains and architectures typical of

Toxoplasma and Plasmodium micronemal secretory proteins. Examples include expansions of

proteins containing SUSHI, EGF, TSP1, and vWA domains (data not shown). Chromerids

possess unique architectures of proteins containing the macrophage perforin (MacPerf) domain

(Figure 3—figure supplement 4E), which, previously found in apicomplexans and ciliates (as

large expansions), are thought to function in apicomplexans to mediate membrane lysis during

host cell egress and tissue traversal (Roiko and Carruthers, 2009). The Chromera MacPerf

domain proteins also contain arrays of a domain, WSC, thus far not found in other alveolates, as

well as a unique C-terminal DERM domain. Chromera possesses four MacPerf domain proteins

with various domain architectures, whereas Vitrella a single MacPerf protein with a stand alone

MacPerf domain (Vbra_18070.t1).

The ciliate genomes possess highly amplified and antigenically diverse repertoires of GPI-

linked proteins termed ‘immobilization antigens’ (Caron and Meyer, 1989). We did not see

amplifications of GPI-linked gene families in either chromerid species. Lineage-specific gene

amplifications include a predicted secreted protein in Vitrella, which contains an arenylsulfo-

nase domain (Figure 3—figure supplement 4E). The chromerids possess highly amplified

gene family, annotated as ‘CAST multi-domain protein’ in the ciliate,Oxytricha (e.g., UniProt ID:

OXYTRI_15408), and which comprises conserved cysteine-rich domains in the extracellular

region, a single transmembrane domain, and a conserved predicted coiled-coil region in the

cytoplasmic domain (e.g., Cvel_3066.t1). Representatives of this protein are found in the ciliate

Oxytricha, but not in Tetrahymena and Paramecium; in stramenopiles, choanoflagellates and

coccidians, but are absent from other apicomplexans such as Cryptosporidium, Theileria,

Babesia, and Plasmodium.
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Appendix 6

ApiAP2 proteins.

We examined the abundance of apicomplexan-specific AP2 (apiAP2) genes, transcription

factors that play regulatory roles in key aspects of apicomplexan biology (Campbell et al.,

2010; Flueck et al., 2010; Radke et al., 2013; Kafsack et al., 2014; Sinha et al., 2014). We

scanned the protein-coding gene sets of the 26 species using the apicomplexan-specific

apiAP2 HMM, which was constructed with the AP2 domain sequences from apicomplexan

species. We found that apiAP2 genes were abundant in both chromerids and in all

apicomplexans. ApiAP2 genes were moderately abundant in the two dinoflagellates and rare or

absent in ciliates and stramenopiles, respectively (Figure 3—figure supplement 1D). There

were very few apiAP2 genes that were shared between apicomplexans and non-apicomplexan

species; most were shared between closely related species, that is, from the same clade

(Figure 3—figure supplement 1B). These lineage-specific apiAP2 genes in the present-day

species could have arisen from de novo gene birth or modification of the full-length sequences

of existing genes beyond recognition. In the former case, the proto-apicomplexan ancestor had

a small set of apiAP2 genes. In the latter case, the common ancestor already had a large set of

apiAP2 genes, which continued to change, giving the appearance of ‘new’ clade-specific

genes. The latter case, the turnover scenario, is more parsimonious because, according to the

de novo gene birth scenario, apiAP2 genes must have expanded independently in every

descending lineage from the proto-apicomplexan ancestor. In summary, our data support the

notion that massive apiAP2 expansion occurred in the common ancestor before Apicomplexa

and chromerids split, and the apiAP2s continued to change as the common ancestor split into

chromerids and apicomplexans, which continued to radiate and adapt to their host niches and

life cycle strategies.

We sought to determine if gene duplication and divergence was a significant mechanism for

the expansion and the turnover of apiAP2 genes. The number of apiAP2 genes that have other

homologous apiAP2 genes within the species based on OrthoMCL clustering, which are likely

mediated by paralogous expansions, was high (93 out of 136) in chromerids (Figure 3—figure

supplement 1D). In Vitrella, we identified one cluster of 50 homologous apiAP2 genes. This

means that gene duplication played an important role in expanding apiAP2 gene repertoire in

chromerids. The number was significantly less (5 out of 13) in dinoflagellates than in chromerids

(Figure 3—figure supplement 1D). We suspect that gene duplication and diversifications

drove expansion of apiAP2 genes significantly after the split of dinoflagellates. In apicomplexan

species, evidence for recent duplications was sparse, as only 4 out of 409 apiAP2 genes had

homologous copies in the same species. This does not necessarily mean that apiAP2 genes do

not duplicate readily in apicomplexans, but rather that redundant copies of apiAP2 are quickly

lost or diversified beyond recognition in part by selective pressure to reduce gene repertoires

and genome sizes (Katinka et al., 2001) and due to higher rate of sequence divergence in

parasites (Hafner et al., 1994).

Previous studies have shown that plant genomes contain a large repertoire of AP2 genes, and

that plant AP2 domains evolved from an endonuclease domain in a cyanobacteria (Magnani

et al., 2004). According to our phylogenetic analysis, AP domains among bacteria are many

and diverse, with both plant-like and apicomplexan-like AP2s (data not shown). We did not find

significant homology with bacterial AP2 genes at the full gene length level. It is not clear if the

originally transferred AP2 gene has evolved beyond recognition or if only the domain has been

transferred to these eukaryotes. The exact genetic events that led to acquisition of AP2s in

apicomplexans are not clear. However, what is the most probable scenario is that AP2 domains

in alveolates came from bacteria and have expanded in myzozoans, independent of those in

plants. Both functional studies and more taxon sampling would be required for elucidating how

AP2s in alveolates were acquired in the first place.
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Figure 2—figure supplement 1. Gene gains and losses across the hypothetical ancestors of 
the 26 species under study. 

Triangles pointing upward indicate gains, triangles pointing downward losses, and the total 
number of orthogroups at that particular node are proportional to the length or the darkness of the 
shade of the gray boxes. Gene gains and losses were inferred with gene birth-and-death model 
with posterior probability >0.3 (‘Materials and methods’). 

Figure 2—figure supplement 2. Overview of chromerid Carbamoyl Phosphate Synthetase 
(CPS) and Fatty Acid Synthase I (FAS I). 

(A) Phylogenetic tree of CPS amino acid sequences demonstrates that Chromera and Vitrella 
contain only cytosolic CPS involved in pyrimidine biosynthesis, which has been duplicated in 
Vitrella. An additional gene coding for CPS was identified only in the Vitrella genome assembly 
(marked by *) was found to be bacterial contamination. None of the sequences encode a 
mitochondrial leader at the N-terminus of the corresponding protein. (B) Structures of selected 
multi-modular enzymes in Apicomplexa and chromerids. (C) Treatment of Chromera by 
Triclosan, an inhibitor of FASII. FASI is responsible for synthesis of short saturated FAs, while 
FASII mediates their modifications and synthesis of structural lipids. Production of short 
unsaturated FAs (C14:0; C16:0; C18:0) was not affected by Triclosan, suggesting that, in 
Chromera, short saturated FAs are produced by FASI and are likely modified by FASII. 

Figure 2—figure supplement 3. Summary of metabolic pathways based on KEGG 
Assignments. 

Schematic comparison of metabolism between Chromera, Vitrella, and selected species from 
Apicomplexa. Phyletic patterns for conservation of metabolic function are color-coded as shown 
in the panel on the right. A key for the abbreviations and the details of each enzymatic reaction 
are found in Appendix 2 and Figure 2—source data 1. 

Figure 2—figure supplement 4. An overview of endomembrane trafficking components. 

Coulson plot representation of the retention/loss of genes encoding trafficking gene complement 
of the Retromer, Clathrin, ESCRT, AP, and MTC family proteins amongst the 26 species. The 
fill colors indicate different phyla, for example, red Coulson plots for apicomplexans. Legends at 
the top of each column denote subunit components of complexes. For each organism, filled 
sectors of the pie represent presence of the corresponding protein, whereas empty sectors 
represent a failure to identify the corresponding protein in the genome (the method is described 
in Appendix 3). In cases where multiple copies of the protein are present, and can confidently be 
ascribed to unique genes, numbers indicate relevant paralog counts. The 26 species are shown on 
the left side with a phylogenetic tree. For simplicity, all subunits are listed as per yeast 
nomenclature, and only revert to human nomenclature when no homologous yeast gene exists. 
Abbreviations: CHC, Clathrin heavy chain; CLC, Clathrin light chain; V, Vps; C, CHMP; Vt, 
Vta1; B, Beta, M, Mu; S, Sigma, G, Gamma; A, Alpha; D, Delta; E, Epsilon; Z, Zeta; T20, 
Tip20; D1, Dsl1; S39, Sec39; T, Trs; T17, Tca17; C, COG; S, Sec; E, Exo; ESCRT, Endosomal 



Sorting Complex Required for Transport; MCT, multi-subunit tethering complex; AP, Adaptor 
Protein. IDs of genes encoding the components are listed in Figure 2—source data 2. 

Figure 2—figure supplement 5. Evolutionary history of genes encoding cytoskeleton across 
26 species. 

(A) Heatmap showing the phyletic pattern of 25 known flagella-related genes (vertical) across 
the 26 species (horizontal). Gene copy numbers are displayed as numerals on each cell. Black, 
blue, and orange bars on the right indicate intraflagellar transport, basal body, and striated fiber 
assemblin (SFA), respectively. The IDs of genes encoding flagellar components are listed in 
Figure 2—figure supplement 5—source data 1. (B) Schematic representation of losses along the 
evolutionary paths. See Figure 2B,C for legend. Blue and Brown colored boxes denote presence 
of basal body and IFT proteins. (C) Heatmap showing distribution of actin and actin-regulatory 
proteins across the 26 species. They were annotated based on previously defined classification 
rules with Pfam domain or based on orthology (OrthoMCL clustering) with known actin and 
actin-related genes. The numbers of genes are shown as numerals within each cell. (D) 
Phylogenetic tree of SFA genes, identified with the canonical SF-assemblin domain (PF06705) 
(closed circles) and those with the variant SF-assemblin domain (open circles) for our 
downstream analyses in Figure 4. The variant SF-assemblin domain, where some amino acid 
sequences were rearranged, was confirmed by manual inspection of the alignment (data not 
shown). The gray shade indicates alveolate-specific SFAs. (E) A network view of amino acid 
sequence homology between ISP family genes. Edges are drawn depending on the strength of the 
sequence homology: dotted (BLASTP E value <10−20) or solid (BLASTP E value <10−30). The 
two letters within the node refer to acronyms of the species name and the node color species 
group: red (Plasmodium); green (coccidians); magenta (Cryptosporidia); orange (piroplasms); 
yellow (chromerids); and navy (dinoflagellates). ISP3 has been duplicated and diverged from 
ISP1 after the common ancestor of coccidians, piroplasms, and Plasmodium spp. split from 
Cryptosporidia. 
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