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Chapter 11
Entamoeba histolytica: Bridging the Gap 
Between Environmental Stress and Epigenetic 
Regulation

Kirschenbaum Michael and Ankri Serge

Abstract Increasing evidence indicates that parasites display unique and diverse 
mechanisms of epigenetic regulation. In this chapter we present the current state of 
knowledge about the Entamoeba histolytica DNA/tRNA methyltransferase (Dnmt2) 
machinery and the related EhMLBP, a protein involved in the recognition of meth-
ylated DNA targets. The regulation of these epigenetic components by environmen-
tal challenges relevant to the biology of the parasite (including heat shock, glucose 
starvation, oxidative and nitrosative stresses) is also discussed.

11.1  Entamoeba histolytica: Life Cycle  
and Environmental Challenges

Entamoeba histolytica, the protozoan parasite responsible for amebiasis, is a 
dimorphic organism whose life cycle consists of two stages: the infective cyst and 
the invasive trophozoite. During its development the parasite moves through a 
series of different localized microenvironments and biological niches to which it 
must adapt. Initial infection begins with ingestion of nascent cysts as obtained from 
contaminated water supplies or food. Upon passage through the upper gastrointes-
tinal tract, the parasites excyst in the terminal ileum, whereupon they migrate to 
and colonize the large intestine. Here, the parasite’s life cycle takes a series of 
divergent paths depending on the ultimate pathophysiology of the disease. Ninety 
percent of E. histolytica infections are asymptomatic and the parasite remains a 
commensal organism feeding on the various flora and microbiota of the colon [1]. 
The trophozoites multiply and divide through binary fission, encyst, and pass 
through the stools, perpetuating the life cycle. However, in the other 10 % of cases 
in which symptomatic infection occurs, the trophozoites invade the mucosal lining 
of the colon, burrowing and coalescing into flask-shaped ulcers, with resultant coli-
tis or dysentery of the host. Disease progression may end here, resolving with the 
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infection; or it may continue, with final emergence occurring in distal organs, 
 generally the liver. Other more rare manifestations include pulmonary, cardiologic, 
and brain involvement [2].

Among the various environmental challenges encountered by E. histolytica are 
drastic changes in pH, pO2, glucose concentration, biofilm substrate, the surrounding 
biome, nutrient availability, and the numerous assaults of the host immune system; 
including oxidative stress, heat shock, complement activation, and phagocytosis ([1, 
3–5]). The initial environment, the colonic lumen, is host to a diverse array of resi-
dent microflora comprising more than 50 genera and 400 species [3]. Oxygen con-
tent is low, pH fluctuates markedly, glucose levels are low (but variant in accordance 
with the nutritional status of the host), and the metabolic environment consists 
mostly of acetogenic sugars and short-chain fatty acids [3]. The mucus overlaying 
the colonic epithelium is a complex gel of glycolipids, glycoproteins, and sugar resi-
dues including N-acetylglucosamine, N-acetylgalactosamine, d- galactose, fucose, 
and sialic acids [3]. As mentioned previously, E. histolytica begins as a commensal, 
feeding off this rich diversity of microorganisms in the large intestine. Indeed, it is a 
voracious predator, and the trophozoites are capable of consuming up to 1,000 bac-
teria per hour, individually [6]. Regarding the host immune system, it, too, is initially 
tolerogenic, utilizing both T regulatory cell activation and secretory immunoglobu-
lin A to suppress inflammatory responses and prevent parasitic contact with the 
colonic mucus, respectively [1]. When the parasite does invade the colonic mucosa, 
however, it is henceforth subjugated to radically different environments (depending 
on the bodily compartment/reservoir), most notably characterized as being oxygen-
ated, composed of an extracellular matrix (collagen, elastin, laminin, and fibrinogen) 
[7], and hostile, resulting from the activated inflammatory immune response.

As such, the amoeba must be capable of adapting to the demands of its surround-
ing environment. Numerous questions abound, and we find ourselves questioning 
the precise mechanisms controlling these transitions; which enable the parasite to so 
perfectly adapt to such a broad range of different situations. Of particular concern is 
determination of the triggers that change the ultimate pathophysiology of the organ-
ism, as it abandons its role as a commensal and becomes an agonist pathogen.

11.2  Epigenetics as a Tool for Adaptation

Epigenetic regulation of protein expression has long been recognized to be a key 
component in the cellular development, adaptability, and physiology of all living 
things, ranging from the simple prokaryotes and Archaebacteria to plants, animals, 
and human beings. Epigenetics specifically refers to chemical or structural modifi-
cations to DNA that preserve the genetic code but ultimately result in altered RNA 
transcription and protein expression. This trait may, in fact, be heritable, resulting in 
altered phenotype/differentiation of all descendant cells, despite the fact that they 
all share the same genotype and overall genetic code. Numerous epigenetic signals 
have already been elucidated, most prominently featuring DNA methylation and 
covalent modifications of histone proteins (e.g., acetylation, phosphorylation). 
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These modifications result in overall changes in chromatin structure and accessibil-
ity to transcription factors [8] and other nuclear proteins, such as methyl binding 
domain proteins [9].

In recent years, epigenetic regulation of gene expression has emerged as a crucial 
aspect of parasite biology. Indeed, this genomic plasticity has been demonstrated as 
a key factor in the virulence, differentiation, and lifecycles of protozoa as varied as 
Toxoplasma gondii, Plasmodium falciparum, and Trypanosoma brucei [10–13]. 
Alternative transcriptomes have also been obtained for the virulent HM1:IMSS 
E. histolytica strain versus the avirulent Rahman strain, with differential protein 
expression profiles for key virulence genes including the cysteine proteases, Gal/
GalNAc lectins, and the protective peroxiredoxin [14]. Although many of the fun-
damental principles of epigenetic gene regulation are similar to those in mammalian 
cells and model systems, protozoan parasites also display unique and diverse mech-
anisms of epigenetic gene regulation [15–17]. This chapter presents our current 
state of knowledge about Dnmt2-mediated methylation in the parasite E. histolytica 
and its regulation by the environment.

11.3  Evidence for 5-Methylcytosine in the Genome  
of E. histolytica

DNA methylation is associated with gene silencing and transposon control [18, 19]. 
In mammals, 3 % to 8 % of cytosine residues are methylated, generally in a CpG 
context [20]. Typically, DNA methylation leads to recruitment of methylated CpG 
binding domain (MBD) proteins, which themselves interact with histone deacetylase 
to alter chromatin structure; condensing it, and silence gene expression [21]. The first 
clue about the presence of m5C in E. histolytica came 13 years ago when transfected 
E. coli activated their mrr methylation-restricting systems in response to exogenous 
E. histolytica transfectant plasmids (unpublished results). Direct evidence of the 
presence of methylated cytosine in the parasite’s genome was then achieved via 
immunoblotting with m5C-specific antibody [22]. Recently, high pressure liquid 
chromatography (HPLC) coupled to mass spectrometry revealed low amounts of 
m5C in E. histolytica DNA (about 0.05 %) but definitely more than the detection 
level of the method (unpublished data). This presence of m5C in the genome of the 
parasite raises questions regarding its formation, the cellular/signaling events regu-
lating this phenomenon, and its role or roles in the parasite life cycle and virulence.

11.4  E. histolytica Dnmt2 (Ehmeth) is a DNA 
Methyltransferase

The formation of m5C is catalyzed by 5-cytosine methyltransferase (m5C-MTase) 
with S-adenosylmethionine as a cofactor. The mammalian DNA machinery consists 
of three active DNA MTases: Dnmt1, Dnmt3a, and Dnmt3b. Dnmt1 has a high 
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preference for hemi-methylated DNA [23, 24] as a substrate, functioning as a 
“maintenance” DNA MTase, which preserves epigenetic differentiation throughout 
descendent cell lines during mitotic events. Dnmt3a and Dnmt3b, however, are de 
novo DNA MTases acting on nonmethylated DNA (for review, see Jeltsch [20]) and 
initiate active epigenetic regulation. A fourth enzyme, Dnmt2, is the most conserved 
of all DNA MTases; belonging to a large family of proteins conserved in all species 
from Schizosaccharomyces pombe to humans [25]. It is also the most enigmatic, 
however. The enzyme has very weak methylation activity on DNA [26–28]. More 
recently, methylation of tRNAAsp could be attributed to Dnmt2 [29]. Although this 
could indicate a biological function of the enzyme, the phenotype of knockout (KO) 
mutants is usually very mild or not detectable [29, 30]. Remarkably, the tRNA 
methylation activity follows a DNA methylation motif (utilizing cysteine79 present 
in motif IV of the catalytic site) and not the one employed by the structurally similar 
tRNA methyltransferases (which use an alternative cysteine to stabilize the Michael 
addition of a methyl group) [31]. Indeed, what distinguishes Dnmt2 from the other 
DNA MTases is its comparatively shorter N-terminal regulatory domain, which 
may play a role in its highly discriminate DNA-binding activity. The catalytic 
C-terminal domain is shared by all DNA methyltransferases; and structural analysis 
of human Dnmt2 showed a high similarity to the M.HhaI methyltransferase from 
Haemophilus haemolyticus [32].

E. histolytica belongs to the so-called Dnmt2 only organisms and does not contain 
any of the canonical DNA methyltransferases (Dnmt1 and Dnmt3). Substantial evi-
dence supports E. histolytica Dnmt2 (called Ehmeth), as a genuine DNA MT. First, 
a number of DNA sequences have been identified via methylated DNA immunopre-
cipitation (MedIP) using the 5mC antibodies. These sequences include ribosomal 
DNA (rDNA), heat-shock genes (HSP70 and HSP 100), and retrotransposons [22, 
33, 34]. Further analysis of these sequences utilizing bisulfite sequencing indicated 
that, in contrast to mammals, where cytosine is methylated predominantly within the 
CpG dinucleotides, the DNA methylation pattern in E. histolytica is not restricted to 
a CpG context, but can also occur at non-CpG sites [22]. Interestingly, non-CpG-
methylation in mammals is primarily found in viral or stably integrated plasmid 
sequences [35], as well as in the endogenous long interspersed nuclear element, 
LINE-1 [36]. In higher plants, DNA methylation is commonly found not only in the 
symmetrical motifs, CpG and CpNpG, but also in some asymmetrical contexts, such 
as CpN, and is needed for normal development [37]. Therefore, it has been proposed 
that non-CpG methylation may reflect the substrate specificity of Dnmt2.

The role of the Dnmt2 protein family is still under investigation. Conventionally, 
DNA methylation in higher eukaryotes is linked with the silencing of gene  expression. 
A correlation between DNA methylation and gene expression has been reported for 
the HSP100 gene of E. histolytica [34]. This apparently is not its most important 
function in E. histolytica because treatment with 5-azacytidine (a potent inhibitor of 
DNA methyltransferase) has a limited effect on gene expression in the parasite [38]. 
Remarkably, however, the ability of 5-azacytidine (23 μM)-treated E. histolytica 
 trophozoites to form liver abscesses in infected hamsters is significantly 
reduced [22], suggesting that Ehmeth activity [39] regulates E. histolytica virulence. 
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One of the other functions of DNA methylation in higher eukaryotes is to provide 
protection from selfish DNAs that include retroelements [40]. The non-long- terminal 
repeat (non-LTR) retrotransposons encode a reverse transcriptase (RT) and other 
proteins that are needed for transposition. Non-LTR retrotransposons consist of 
short interspersed nuclear elements (SINEs) or long interspersed nuclear elements 
(LINEs), which are also transposed by reverse transcription of mRNA directly into 
the site of integration [41]. The sequencing of the E. histolytica genome revealed 
multiple LINE families and SINE elements that are also abundantly transcribed [42, 
43]. Nevertheless, most of the LINEs have lost their transposition ability, probably 
because of mutations in some of their essential genes, such as reverse transcriptase 
[44]. It has been proposed that these mutations are the result of the accelerated 
deamination that occurs to the methylated cytosines that are present in the LINEs 
[45]. Newly emergent biotechniques may enable us to explore this phenomenon. 
Recent work has established a retrotransposition-competent cell line in E. histolyt-
ica, that is, reconstructed ORF2 (reverse transcriptase and accompanying endonu-
clease) serving as an activated LINE element, coupled with a secondary vector 
consisting of marked SINE linked to a targeted hotspot of integration [46]. Double 
transfectants displayed retrotransposition capability, mobilizing the marked SINEs 
and inserting them into the neighboring hotspot. It will be interesting to examine the 
relationship between Ehmeth expression and the frequency of retrotransposition, the 
stability of these activated SINEs in both their respective mosaics and tendency to 
accumulate polymorphisms (as correlated to Ehmeth expression), and, finally, the 
methylation status of the newly mobilized SINEs. This control of retrotransposons 
via Dnmt2-mediated DNA methylation has been demonstrated in other Dnmt2 only 
organisms including Dictyostelium and Drosophila spp. [28, 47], and the control of 
repetitive DNA elements by the trematode Schistosoma mansoni Dnmt2 has also 
been recently proposed [48].

11.5  Ehmeth is a tRNA MT

The observation that Dnmt2 methylates tRNA was first reported by Goll et al. [29]. 
In this seminal paper, the authors showed that Dnmt2 has a strong methylation 
activity at C38 of tRNAAsp in mice, Drosophila melanogaster, and Arabidopsis 
thaliana [29]. In addition to tRNAAsp, tRNAVal, tRNAGly and tRNAGlu are also meth-
ylated by Dnmt2 [49, 50]. Interestingly, Dnmt2 modifies these tRNAs at cytosine 38 
following the reaction mechanism established for 5-cytosine DNA methyltransfer-
ases [29, 49]. This observation extends to E. histolytica as well. Recombinant 
Ehmeth prepared from E. coli was able to methylate synthetic tRNAAsp. Concurrently, 
global tRNAAsp methylation in E. histolytica was measured via incorporation of 
radioactive methyl group into the tRNA of the parasite, utilizing hDnmt2. In this 
assay, the amount of SAM incorporated is proportional to the amount of unmethyl-
ated tRNA [39]. Recently, bisulfite sequencing of tRNA has been developed as well. 
This method offers direct detection of cytosine methylation in tRNA, accurately 
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localizing the methylated cytosines within the sequence. In applying this method to 
E. histolytica, we showed that Ehmeth, as do other Dnmt2 proteins [29], methylates 
tRNAasp at C38 (manuscript in preparation).

Therefore, in contrast to human Dnmt2, which apparently has a strong substrate 
preference for tRNA, Ehmeth can use both DNA and tRNA as substrates. This dual 
specificity for DNA and tRNA has also been proposed for the Dnmt2 homologue in 
Drosophila melanogaster [31]. The exact biological role of Dnmt2-mediated tRNA 
methylation is not yet known in E. histolytica, however. The position next to the 
anticodon loop suggests a role in the basic transcriptional process, but influence on 
tRNA folding and stability is also possible. A recent work points to the role of 
Drosophila Dnmt2 in the regulation of tRNA degradation. In this work, stress- 
induced cleavage of tRNAs was Dnmt2 dependent, and Dnmt2-mediated methyla-
tion protected tRNAs against ribonuclease cleavage [49]. Additionally, Dnmt2 has 
been implicated as an agent in the Drosophila innate immune response; intercepting 
exogenous viral RNA and labeling it for disposal utilizing the Dicer/Argonaute 
RNAi machinery [51]. In Saccharomyces cerevisiae, Trm9-mediated tRNA meth-
ylation is linked to the translation enhancement of genes related to stress response, 
DNA damage, and other cellular functions. These results together with previously 
published data support a role of tRNA methylation in the control of tRNA stability 
and consequently protein synthesis [52]. Recently, it has been shown that disrupting 
both the Dnmt2 and the NSun2 tRNA methyltransferases in mice led to the com-
plete loss of tRNA methylation, reduced protein synthesis, and lethality [30].

11.6  Regulation of Ehmeth Activity and the Role 
of the Environment

It is well documented that long-term culture of pathogens, particularly parasites, 
leads to virulence attenuation [53, 54]. This observation also applies to E. histolyt-
ica for which regular passage through hamster liver is necessary to keep functional 
the ability of the parasite to form a liver abscess [55]. Similarly, we observed that 
continuous culture of E. histolytica in TYI-S-33 media progressively lowers the 
expression of Ehmeth to a barely detectable level (Fig. 11.1). This observation 
raises new and interesting questions about the regulation of Ehmeth expression and 
the impact of environment on this regulation. An analogous observation about the 
effect of growth conditions on the expression of Dnmt2 in Saccharomyces pombe 
was reported stating that nutrition (peptone) regulates Schizosaccharomyces pombe 
Dnmt2-dependent tRNA methylation [50].

Glucose starvation (GS), one of the most studied metabolic stresses, has been 
investigated in the malaria parasite Plasmodium falciparum. Interestingly, the 
PfEMP (var) genes, key components in malaria pathogenesis, are among the genes 
upregulated by GS [56]. Accordingly, it has been proposed that ambient glucose 
concentration is a good indicator of the environmental changes to which the parasite 
is exposed during its life cycle. This regulatory role of glucose is particularly 
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 relevant to E. histolytica because, as already mentioned, it lives in the colon, a niche 
where the amount of available glucose for fermentation is usually small (about 
0.2 g/kg tissue) because of the high absorptive capacity of the glucose transporters 
in the small intestine [57–59]. On rare occasions, it has been reported that E. histo-
lytica trophozoites leave the colon and migrate to the liver. In this organ, the concen-
tration of glucose was estimated to be twice that of perfusing blood (about 2.0 g/kg 
tissue) [60–62]. We recently reported that E. histolytica is capable of responding to 
changes in its surrounding glucose concentration: short-term glucose starvation 
(12 h) led to the accumulation of enolase, a glycolytic enzyme, and the inhibition of 
the Ehmeth activity in its nucleus (Tovy et al.). Extending the condition of glucose 
starvation beyond 12 h led to the progressive death of most of the parasite popula-
tion. Surprisingly, some individual clones survived and adapted to this absence of 
glucose in the media. Adaptations included a number of metabolic changes. 
Specifically, the increased expression of various catabolic enzymes involved in 
amino acid regulation; in particular, methionine gamma lyase, aspartate ammonia 
lyase, and dihydropyrimidine dehydrogenase (DPD), an important effector of the 
pyrimidine catabolism pathway. Indeed, DPD is crucial for parasite growth when 
the availability of glucose is limited [5]. Undergoing experiments also point toward 
increased tRNAasp methylation levels in these glucose-starved parasites (unpub-
lished data). This result raises many intriguing questions about the role of tRNA 
methylation in the adaptive mechanism to glucose starvation.

Until recently, no interacting partner had been identified for Dnmt2. We have 
identified that enolase interacts with the catalytic site of Ehmeth, subsequently 
inhibiting both its DNA and tRNA methyltransferase activity [39]. Additionally, 
short-term glucose starvation (12 h) triggers the accumulation of enolase from the 

[AU1]

Fig. 11.1 Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of Ehmeth expres-
sion in an HMI:MSS strain that has been kept in continuous culture for more than 4 years (2008–
2011). The HMI strain (a gift of Prof. Mirelman, Weizmann Institute) used in this study was 
originally isolated from a hamster that developed a liver abscess following injection of trophozo-
ites in its liver. The strain was kept under continuous culture in TYI media without further passage 
in hamster liver. Semiquantitative RT-PCR was used for measuring Ehmeth expression
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cytoplasm to the nucleus, resulting in activated Ehmeth inhibiton [39]. We recently 
analyzed the crystal structures of both E. histolytica enolase and of Ehmeth [63, 64], 
but the molecular details on the Ehmeth–enolase hybrid remained elusive. Hence, 
the three-dimensional structure of the Ehmeth–enolase complex still needs to be 
elucidated.

11.7  Ehmeth Protects E. histolytica from Oxidative 
and Nitrosative Stresses

Although the overall biological function of Dnmt2/Ehmeth is not yet completely 
understood, recent work has enabled us to view their expression, pleiomorphically, 
in a broader context; particularly in terms of survival, longevity, and adaptability to 
oxidative stresses. Dnmt2 expression has been implicated as a necessary component 
to maintaining the normal lifespan in D. melanogaster; and, indeed, overexpression 
induces longevity in fruit flies [65]. It has been proposed that the underlying mecha-
nism behind this observation is an increased resistance to oxidative damage; which 
has a well-established association with both degenerative diseases and aging [66]. 
Dnmt2 overexpression induces small heat-shock protein (Hsp) expression in 
Drosophila melanogaster [65], which facilitates the stabilization/sequestration of 
damaged or misfolded proteins [67]. Similarly, our group has demonstrated Hsp 70 
upregulation in Ehmeth overexpressing E. histolytica transfectant [68]. Moreover, 
these Ehmeth-overexpressing trophozoites exhibit significantly greater resistance/
survivability to H2O2 exposure. H2O2 is one of the principal convergent intermediate 
metabolites in oxidative stress. Activated resistance to oxidative damage is not sur-
prising when considered in the context of E. histolytica virulence. Passage from the 
anoxic luminal colon into the tissues or bloodstream of the human host necessitates 
a dramatic change in environmental pO2. Moreover, the parasite must now with-
stand the assaults of the human immune system, including oxidative bursts of super-
oxide anion and nitric oxide. Hsp induction, coupled with the upregulation of other 
protective antioxidant proteins (e.g., peroxiredoxin, iron containing superoxide dis-
mutase), is thus seen in virulent [14] and even in laboratory-made drug-resistant 
strains of E. histolytica [69]. Puzzlingly, however, Ehmeth expression does not 
seem to directly induce Hsp 70 expression via methylation of its promoter, implying 
that there are other agents or mediators involved in the process [68].

Nitric oxide (NO) is the major cytotoxic molecule released by activated macro-
phages for defense against E. histolytica [70]. It is synthesized from l-arginine 
utilizing the calmodulin dependent iNOS dimer and has been implicated as a 
major effector for immunomediated antimicrobial defense. E. histolytica actually 
responds to NO and initiates fragmentation/mobilization of its proto-endoplasmic 
reticulum- like mitosomes, in addition to upregulating numerous genes involved in 
oxidative control and glycolysis [71]. S-Nitrosylation is an emerging redox-based 
posttranslational modification. S-Nitrosylation of crucial virulence factors and 
metabolic enzymes has been reported [72, 73]. There is increasing evidence to 
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support NO as a regulator of key epigenetic events. NO can have direct or indirect 
effects on the nucleosome assembly and chromatin structure by inhibiting or acti-
vating transcription factors, histone deacetylases, histones, and nuclear receptors. 
In addition, NO can disrupt the binding of transcription factors with their interact-
ing proteins and can inhibit their nuclear localization (for a recent review, see Illi 
et al. [74]). The regulation of DNA methylation pattern by “stress” in some spe-
cific loci in plants, basal chordates, and mammals, including humans, has been 
well documented. However, the mechanisms that control this regulation are not 
well understood [75]. Thus, nothing is known about the effect of NO on Dnmt 
activity in general and on Dnmt2 in particular. Indeed, we do not know if the same 
protective effect of Ehmeth against oxidative stress applies to nitrosative stress 
[68]. Our ongoing research to address these issues indicates that Ehmeth protects 
the parasite from nitrosative stress, although the mechanism behind this protective 
effect is still under study.

11.8  Recognition of Methylated Cytosine by EhMLBP

Conventional methyl-CpG-binding proteins contain the conserved DNA-binding 
motif methyl-cytosine binding domain (MBD), which preferentially binds to meth-
ylated CpG dinucleotides. These proteins serve as transcriptional repressors, medi-
ating gene silencing via DNA cytosine methylation (for a recent review, see Clouaire 
and Stancheva [76]). Information about methylated DNA-binding proteins in proto-
zoa, however, was nonexistent. Indeed, bioinformatics analysis of the E. histolytica 
genome revealed an absence of MBD homologues, raising the very important ques-
tion of how E. histolytica senses the aforementioned methylated regions in its 
DNA. Research initiated 3 years ago has established that a protein named E. histo-
lytica methylated LINE binding protein (EhMLBP) [77] is involved in DNA meth-
ylation recognition. Specifically, it has a tendency to interact with those portions of 
the genome known already to be methylated (e.g., RT LINE DNA, rDNA) but com-
petitive DNA probe binding assays have shown it to be a strong sensor of DNA 
methylation in a variety of genes including dihydrouridine synthetases, RAP 
GTPase-activating protein, serine/threonine protein kinase, and leucine-rich repeat 
containing protein. The common ground is that EhMLBP binds with a much higher 
affinity to methylated DNA over its nonmethylated counterpart. Further character-
ization of EhMLBP revealed that its C-terminal DNA-binding region has strong 
homology with histone H1 of Xanthomonas oryzae and Trypanosoma brucei gam-
biense; however, it shares no homology with the E. histolytica histone H1, or any of 
the other “classical MBDs” in mammals, plants, or insects. Thus, an in-depth analy-
sis of EhMLBP localization, cognate protein partners, and DNA targets was carried 
out. The results revealed EhMLBP to be a perinuclear protein with strong prefer-
ence for “kinked” DNA containing adenine stretches as present in LINE and SINE 
retrotransposons at their 3′-ends, and a consensus motif shared by the aforemen-
tioned genes [77, 78].
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Regarding downregulation of EhMLBP, antisense technology, peptide targeting, 
and the lexotropic agent distamycin A (shown to be a potent inhibitor of EhMLBP) 
[79] all resulted in trophozoites with impaired growth and virulence; this finding 
identified EhMLBP as an essential constituent of the parasite E. histolytica and a 
possible target for anti-amebic chemotherapy. Interestingly, functional analysis 
revealed that EhMLBP also contains heat-shock domains, heat-shock transcrip-
tional elements, and an N-terminal fibrinogen α-chain. What it lacks, however, is 
the conserved α-crystallin domain shared by Hsps in all three domains of life: 
Archea, Bacteria, and Eukarya. This lack indicates convergent evolution and a pos-
sible link between environmental heat stress and epigenetic control of transcription. 
Indeed, heat shock has been shown to induce EhMLBP expression both in vitro and 
in vivo, and the heat-shock element promoter (shared with the other Hsps) is induced 
by the same transcription factor [80]. Moreover, heat shock also induces pan-nuclear 
mobilization of EhMLBP along with its appearance in cytoplasmic vesicles that 
appear as putative stress granules. Not surprisingly, EhMLBP overexpression has 
been shown to protect heat-shocked trophozoites and even reduces overall protein 
aggregation in both control and heat-shocked trophozoites [80].

The fundamental question confronting us is whether EhMLBP is a sensor of 
DNA methylation initiating an adaptive response to methylated portions of the 
genome or whether it may, in fact, induce DNA methylation via recruitment of pro-
teins such as Ehmeth. A study in EhMLBP overexpression revealed increased tran-
scription of RT LINE DNA [80]. It would be interesting to investigate further the 
methylation status of this DNA, as well as concurrent overexpression/underexpres-
sion of Ehmeth. Conversely, what happens to Ehmeth/EhMLBP expression under 
overexpression of the cognate DNA targets? Finally, further research may reveal 
details about a putative protein scaffold, interactions with S-MARs, and/or cytoplas-
mic interactions with proteins and their expression/degradation.

11.9  Concluding Remarks

During the past few years, we have improved our knowledge on the biochemistry of 
Ehmeth, its mode of action, its targets, and the effects of their respective interac-
tions. The data we have obtained thus far imply Ehmeth activity is induced under 
conditions threatening the genomic integrity of the parasite (i.e., external challenges 
such as stress, nutrients, and foreign genetic material). That Ehmeth expression 
seems less vital or pervasive under laboratory conditions suggests that this artificial 
atmosphere (in vitro) favors the emergence of strains with more lethargic pheno-
types. Alternative, demanding environments may reveal more about Ehmeth expres-
sion, activity, and virulence. The identification of these conditions constitutes an 
important challenge for the coming years. The adage “Tell me who your friends are 
and I’ll tell you who you are” has been shown to be true when we identified enolase 
as the first Dnmt2-interacting protein implicated in both epigenetic regulation and 
metabolism in E. histolytica. More of these interacting proteins must be identified 

K. Michael and A. Serge

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385



in the future if we want to understand the full mechanism of Ehmeth expression as 
it relates to ultimate proteome expression.

Although most of our research is fundamental and tends to focus on the charac-
terization of the epigenetic components in the parasite, we cannot ignore that sev-
eral epigenetic drugs are being tested in clinical trials or even already being used 
(e.g., anticancer or antiepileptic drugs). It may thus be possible to test epigenetic 
targets as putative drugs for the treatment of amebiasis. Indeed, we may extend this 
philosophy toward treatment of other parasitic infections as well. From a clinical 
perspective, this possibility is very attractive because of the lack of homology 
between parasitic proteins such as EhMLBP (which has no mammalian counterpart) 
and human epigenetics. This possibility is particularly relevant because of emergent 
reports of amebiasis refractive to pharmaceutical treatment [81, 82] and various 
laboratory strains with existing metronidazole and even multidrug resistance [83, 
84]. Furthermore, a host of adverse effects is associated with some of the conven-
tional treatments. Possible side effects for metronidazole, for example, include nau-
sea, diarrhea, thrombophlebitis, and even CNS toxicity [85]. Our previous work on 
EhMLBP has shown that it is possible to find an inhibitory peptide that blocks 
specifically the activity of this protein, which highlights the idea that epigenetics 
may be exploited for the development of alternative pharmaceutical agents that will 
serve as novel drugs, targeting a parasite’s unique metabolism or reproductive niche 
that is not manifested in human physiology.
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