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Abstract
The apicoplast and the mitochondrion of Apicomplexa cooperate in providing essential
metabolites. Their co-evolution during the ancestral acquisition of a plastid and subsequent loss of
photosynthesis resulted in divergent metabolic pathways compared with mammals and plants.
This is most evident in their chimerical haem synthesis pathway.

Toxoplasma and Plasmodium mitochondria operate canonical TCA cycles and electron transport
chains, although the roles differ between Toxoplasma tachyzoites and Plasmodium erythrocytic
stages. Glutamine catabolism provides TCA intermediates in both parasites. Isoprenoid precursor
synthesis is the only essential role of the apicoplast in Plasmodium erythrocytic stages. An
apicoplast-located fatty acid synthesis is dispensable in these stages, which instead predominantly
salvage fatty acids, while in Plasmodium liver stages and in Toxoplasma tachyzoites fatty acid
synthesis is an essential role of the plastid.

Introduction
Apicomplexan parasites possess two organelles of endosymbiotic origin: a relict non-
photosynthetic plastid (the apicoplast), and a mitochondrion (Figure 1), which together
contribute substantially to the parasite's metabolic needs. The apicoplast and mitochondrion
show tight physical [1,2] and functional collaboration. A chimerical haem pathway spans
both organelles [3]. Apicoplast generated Isopentenyl pyrophosphate (IPP) is likely used in
mitochondrion co-enzyme Q synthesis, and finally the Toxoplasma mitochondrion and
apicoplast shared a citrate shunt [4].

In accordance with the adaptation of each parasite to its specific host niche, the repertoire of
apicoplast and mitochondrion metabolic pathways has diverged between the different
phylum members [5]. Here we focus on the unique features of these pathways in
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Plasmodium and Toxoplasma and review our current understanding of their roles in
different host environments.

The apicomplexan mitochondrion
Mammalian cells have varying numbers of mitochondria that divide or fuse based on
changing cellular needs, whereas Apicomplexa possess a single mitochondrion whose
biogenesis coordinates with the cell-cycle [2]. Transfer of mitochondrial genes to the
nucleus has occurred in all eukaryotes, allowing nuclear control over mitochondrial
functions (Figure 2). The resulting loss of mitochondrial DNA-encoded genes is extreme in
Apicomplexa and dinoflagellates, whose mitochondrial genomes encode only three proteins
[6,7]. The organellar proteome is largely imported from the cytosol, presumably through the
translocons of the outer and inner mitochondrial membranes (TOM and TIM [8]) as with
other eukaryotes. Translation within the Apicomplexa mitochondrion, however, is highly
divergent. Extremely fragmented ribosomal RNA genes encode products that need to be
assembled into functional ribosomes [9]. No tRNAs are encoded in the mitochondrial
genome [6], and no tRNA amino acyl synthetases are targeted to the organelle [10,11],
rendering mitochondrial translation dependent on a flow of charged tRNAs from the cytosol,
an extremely unusual process. Mitochondria are essential for both Toxoplasma and
Plasmodium spp., being the synthetic site for a number of metabolites (reviewed in [5,8]).
However, recent data suggests they differ in the composition and importance of their
oxidative phosphorylation pathways.

Oxidative phosphorylation and TCA cycle
Oxidative phosphorylation is a canonical function of eukaryotic mitochondria. Tricarboxylic
acid (TCA) cycle reactions are the chief source of electrons that feed the mitochondrial
electron transport chain (mtETC), generating a proton gradient used for ATP synthesis by
the ATP synthase complex (Figure 3).

Genomic sequencing of Toxoplasma gondii and Plasmodium spp. revealed genes encoding
all TCA cycle enzymes, most mtETC components and most ATP synthase complex
subunits. Selective inhibition of mtETC leads to parasite demise, establishing the essential
nature of these reactions. In Toxoplasma, mtETC inhibition affects ATP synthesis [12],
suggesting the presence of oxidative phosphorylation. However, in Plasmodium erythrocytic
stages, mtETC contribution to the ATP pool seems minor [13]. Instead, mtETC appears
essential for pyrimidine biosynthesis by re-oxidation of ubiquinol, needed for the
mitochondrially located dihydroorotate dehydrogenase (DHODH) [14]. While these results
suggest that oxidative phosphorylation is not essential for Plasmodium erythrocytic stages,
ATP synthase subunits are resistant to genetic disruption in these stages [15].

The Toxoplasma TCA cycle utilizes glucose and glutamine, as judged by stable isotope
labeling and metabolomic analysis, and a GABA shunt was noted for entry of glutamine into
the cycle [4] (Figure 3). The source of acetyl-CoA for priming the cycle is unclear, since the
only known pyruvate dehydrogenase complex resides in the apicoplast [16-18]. Branched-
chain keto acid metabolism has been proposed as an alternative source [5].

In Plasmodium, stable isotope labeling and metabolomic analyses initially suggested that
TCA metabolism involved a branched architecture bifurcating from 2-oxoglutarate [19].
However, subsequent investigations revealed that products of the seemingly reductive
branch originate from uninfected erythrocytes [20] and the initial report was retracted [21].
Highly enriched parasite-infected cells show only conventional oxidative reactions, with 2-
oxoglutarate as the entry point (Ke et al. in preparation). Unlike Toxoplasma, glutamine
rather than glucose is the major carbon source for the TCA cycle in Plasmodium
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erythrocytic stages [20]. Genetic disruptions of six TCA cycle enzymes suggest that the
TCA cycle is not essential for Plasmodium erythrocytic- or sexual-stage development, but is
necessary for mosquito stage development (Ke et al. in preparation). Similarly, in P. berghei,
where the mtETC components NADH dehydrogenase [22] and succinate dehydrogenase
[23] are dispensable for erythrocytic stages, they are essential for mosquito oocyst
formation.

Mitochondrial involvement in cell-death and differentiation
Recent studies link mitochondrial dynamics and autophagy in Toxoplasma [24-26].
Mitochondrial fragmentation was observed in response to both autophagy inhibition [24]
and activation [25,26], creating contradictory models where autophagy either controls
mitochondrial homeostasis or induces cell death. Interestingly, autophagy-mediating
components associate with the apicoplast [27], and overexpression of one of them, TgATG4,
results in mitochondrion and apicoplast morphological defects [27], supporting the first
model. However, inhibition of autophagy led to prolonged parasite survival under monensin
treatment [26] supporting the second model.

The involvement of a mitochondrial DnaK tetratricopeptide repeat protein in tachyzoite-
tobradyzoite differentiation was recently proposed, joining several previous studies
demonstrating a correlation between reduced mitochondrial activity and stage differentiation
[28]. The mechanism remains unknown.

Haem biosynthesis, a mitochondrion/apicoplast collaboration
The genomes of Plasmodium and Toxoplasma encode the complete set of haem synthesis
genes [29]. Like most non-photosynthetic organisms, the pathway starts with mitochondrial
conversion of glycine into δ-aminolaevulinic acid [30]. However, the cellular localization
and phylogenetic origin of the downstream enzymes tell a tale of evolutionary shuffling and
rejigging. The next four steps, executed by HemB/C/D/E respectively, take place in the
plastid. While HemB/C/D are of plastid origin, HemE originates from the ancestral
eukaryotic host cell, an ancestry not reflected by its current place of action [31]. The
subsequent steps are executed by a cytosolic HemF, and then by mitochondrial HemY and
HemH. Interestingly, the mitochondrial HemY derives from the red-algal ancestor of the
apicoplast [32], again a conflict between ancestry and current location. Thus, the pathway
wends its way through three compartments, employing enzymes of various ancestral
pathways, only to wind up back in the mitochondrial start point (Figure 4). This curious
hybrid pathway likely reflects the shifts in the main sites of use for tetrapyroles following
the acquisition and subsequent loss of photosynthesis [3].

The apicoplast
A common ancestor of Apicomplexa and dinoflagellates engulfed a red alga, which
underwent reduction to become a secondary plastid (Figure 2). Most dinoflagellates
maintained a photosynthetic plastid, unlike the apicomplexan plastid – the apicoplast –
which lost photosynthesis. The apicoplast now supports three essential metabolic functions:
the synthesis of haem (above), type II fatty acids, and isoprenoid precursors.

Type II fatty acid synthesis (FASII)
Fatty acids are a core component of cellular membranes and of essential prosthetic groups
[33]. De novo fatty acid synthesis occurs either via fatty acid synthesis pathway I (FASI),
typically found in animals and fungi and executed by a cytosolic multi-domain polypeptide,
or via FASII, which depends on several individual enzymes and is more common in
prokaryotes and plastids.
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Both the Toxoplasma and Plasmodium genomes encode complete sets of FASII enzymes
[34], and several kinetic, structural and pharmacological studies support the roles of the
corresponding proteins in FASII (reviewed in [30,35]). However, FASII was apparently lost
by some Apicomplexa [36], and its importance for parasite survival differs between genera
and life stages. Genetic evidence indicates that FASII is essential for the growth of
Toxoplasma tachyzoites and Plasmodium liver stages but not erythrocytic or mosquito
stages [37,38]. This suggests that the importance of FASII depends on the host cell or tissue
environment. A recent study using lipidomics and uracyl incorporation in Plasmodium
asexual stages suggests that the biogenesis of the apicoplast, and potentially other
organelles, depend on salvaged precursors rather than de novo fatty acid synthesis in these
stages [39].

The loss of lipoylation of plastid pyruvate dehydrogenase observed with both
pharmacological [16] and genetic [40] disruption of Toxoplasma FASII had suggested that
FASII supplies only specialized apicoplast lipids. However, a recent study combining
metabolomic and genetic analyses indicated that most (60-80%) myristic and palmitic acids
in Toxoplasma originate from FASII activity [41], making the apicoplast a significant source
of cellular fatty acids. The remaining 20-40% are presumably derived from other sources,
perhaps including the homolog of the multifunctional FASI enzyme found in the
Toxoplasma genome, a potential remnant of its pre-photosynthetic ancestor. There is also
clear evidence for lipid salvage from the host [39,42], and it appears that the contributions of
de novo synthesis and salvage vary depending on circumstances. This flexibility perhaps
facilitates the transition of parasites through different types of host cell during their complex
life cycle.

Isoprenoid precursor biosynthesis
Isoprenoids are derivates of isopentenyl pyrophosphate (IPP) or of its isomer dimethylallyl
pyrophosphate (DMAPP). Apicomplexans possess the 1-deoxy-D-xylulose-5-phosphate
(DOXP) pathway for IPP synthesis [29,43], which is found mainly in eubacteria and
plastids, and lack the alternative mevalonate pathway found in the cytosols of plant, animal
and fungal cells.

Plasmodium spp. are sensitive to fosmidomycin [43], an inhibitor with two potential targets
in the DOXP pathway [44]. Yeh and DeRisi showed that IPP can negate the effect of
fosmidomycin, reinforcing the drug's specificity [45]. Moreover, plastid-less P. falciparum
blood stages can be propagated in the presence of exogenous IPP, implicating the DOXP
pathway as the only essential apicoplast function in Plasmodium erythrocytic stages [45].
Nair and coworkers used genetic approaches to confirm that the DOXP pathway is essential
in Toxoplasma, although fosmidomycin showed little or no effect on tachyzoite growth [46].
Expressing a bacterial fosmidomycin transporter rendered Toxoplasma fully susceptible to
fosmidomycin, suggesting that drug accessibility dictates sensitivity in this case [46]. In an
independent study, Baumeister and coworkers reached a similar conclusion but suggest the
barrier to drug entry is the host-cell rather than the parasite membranes [47].

The end uses of parasite-synthesized IPP are becoming clearer. Potential products include
membrane anchors for dolichols in the ER glycosylation machinery and for ubiquinone in
the mtETC. IPPs are also precursors of the prenyl tails of a range of C-terminally prenylated
proteins such as Rabs [48], which are common in both Toxoplasma and Plasmodium.

Concluding remarks
The endosymbiotic organelles of Apicomplexa are crucial for parasite survival in different
host settings during their complex life cycle. Studies combining metabolomics and genetic
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approaches have exposed interesting differences between Plasmodium and Toxoplasma in
the roles of certain pathways. While genetic studies suggest that the TCA cycle is
dispensable for Plasmodium erythrocytic stages, pharmacological evidence supports an
essential role in Toxoplasma tachyzoite growth [4].

Similarly, the apicoplast FASII pathway is essential in Toxoplasma tachyzoites but
dispensable in Plasmodium erythrocytic stages, where IPP precursor synthesis is the only
essential function.

These differences may reflect the specialist versus generalist strategies adopted by
Plasmodium and Toxoplasma. Malaria parasites appear to rely less on organelle metabolism
in erythrocyte stages. Conversely, Toxoplasma tachyzoites, which can parasitize a large
range of host cells, salvage less from their host and are more dependent on self production.
Another explanation might be related to the different properties of erythrocytes and
nucleated cells. This is supported by the importance of the FASII pathway in Plasmodium
liver stages and the dependence of mosquito stages on an active TCA cycle – both findings
are similar to those in Toxoplasma tachyzoites.

In contrast to our growing understanding of the apicoplast and mitochondrion metabolic
roles, their biogenesis is currently understudied. Insights into apicoplast protein import
[49-52] and division [53,54] are beginning to accumulate, pioneering this important aspect
of organellar biology. Unbiased strategies are being developed aimed at enlarging the
repertoire of known apicoplast proteins [55] and isolating apicoplast enriched fractions [39].
A lipidomics study performed with isolated Plasmodium asexual stage apicoplasts revealed
that the majority of lipids incorporated in the apicoplast membranes are likely of host rather
than algal origin [39]. The relative contribution of de novo synthesis and salvage pathways
to the biogenesis of the apicoplast in Toxoplasma is yet to be established.

Apicomplexan mitochondrial biogenesis is an even more neglected area of research. Its tight
association with the apicoplast has impaired the attempts to address this question. The
establishment of biogenesis mutants for both organelles ([49-55] and Sheiner, unpublished)
paves the way to develop strategies based on breaking their association and isolating each
organelle for its separate analysis.
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mtETC mitochondrial electron transport chain

TCA tricarboxylic acid

FAS fatty acid synthesis
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DHODH dihydroorotate dehydrogenase
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Highlights

• Toxoplasma and Plasmodium posses two organelles of endosymbiotic origin:
the apicoplast, and the mitochondrion.

• The mitochondrion hosts a complete TCA cycle and an electron transport chain
lacking complex I. Glutamine catabolism contributes to the TCA cycle.

• Haem biosynthesis is an extremely unusual chimerical pathway shared between
the two organelles and the cytoplasm.

• Isoprenoid precursor synthesis and fatty acid synthesis are essential roles of the
apicoplast. Different life stages show differential dependencies on these
pathways.
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Figure 1. Fluorescence image of the mitochondrion and the apicoplast of Toxoplasma gondii
The staining of a mitochondrial protein (TGME49_215430, [11], red) that localizes to the
organelle periphery (Sheiner, unpublished data) together with a bimodally targeted
mitochondrial luminal and apicoplast protein (TGME49_283830, Sheiner unpublished data,
green) shows the tight proximity between the two organelles. The co-staining of the
mitochondria demonstrates the difference in morphology between the luminal and peripheral
compartments. TGME49_283830 (green) represents one of many examples of bimodal
targeting between the two organelles. The scheme on the right depicts the outline of the two
Toxoplasma tachyzoites. Bar is 1νm.
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Figure 2. Schematic outline of the acquisition and evolution of the mitochondrion and the
apicoplast of Apicomplexa
(1) Development of a protein import system (purple arrows show flow of proteins from their
genomic place of encoding to their subcellular localization) was an important event in the
evolution of a mitochondrion in the ancestor of all eukaryotes. This was accompanied by
extensive gene transfer to the nuclear genome (green arrows indicate the transfer of genes to
another genome or their complete loss). An algal cell (light blue) carrying a plastid (red)
then began an endosymbiotic relationship with a protist host. (2) Again protein import
systems were established supporting the extensive gene transfer to the nuclear genome and
allowing nuclear control over a newly enslaved organelle. A stable collaboration between
the two symbionts (blue arrow) drove the loss of some redundant genes (green arrows). (3)
A subsequent loss of photosynthesis (green arrow) affected the distribution of tasks, such as
haem synthesis, between the two organelles (blue arrow). (4) Finally the two symbionts now
present in apicomplexan parasites are synchronized in their biogenesis and are tightly
associated, although the biological role of this association remains unclear. (M)
mitochondrion, (P) plastid, (N) nucleus, (Nm) nucleomorph.
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Figure 3. TCA and mtETC in Plasmodium erythrocytic stages and in T. gondii tachyzoites
Pyruvate from glycolysis, glutamate and gamma aminobutyric acid (GABA) from glutamine
metabolism all serve as major starting points for the Plasmodium (thin black arrows, and a
thin blue arrow representing a putative pathway) and Toxoplasma (thin black and red
arrows) TCA cycles. Electrons from the oxidative steps in the cycle are donated to the
mtETC (represented as broken arrows). Components of the mtETC are shown in purple with
their names noted on the left. The asterisk notes that not all the subunits of the Apicomplexa
ATP-synthase are identifiable in their genomes.
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Figure 4. A chimerical haem biosynthesis pathway in Apicomplexa
The acquisition of photosynthesis and then its subsequent loss resulted in shifts as to which
compartment was the main user of tetrapyrroles in the cell, and with it the location of
principal responsibility for synthesis. The resulting pathway is distributed between the
mitochondrion (orange), cytosol (gray) and apicoplast (red). Similarly, the enzymes
involved are of different origins within the original endosymbiont [31]: either the red-algal
plastid (pink) or cytoplasm (gray).
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