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2 Unité de Biologie et Gé né tique du Paludisme, Dé partement Parasites et Insectes Vecteurs, Institut Pasteur, 25–28 Rue du Dr Roux,

75015 Paris, France
3 Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public

Health, 615 North Wolfe Street, Baltimore, MD 21205, USA

Opinion
Malaria parasites undergo a complex life cycle between
their hosts and vectors. During this cycle the parasites
invade different types of cells, migrate across barriers,
and transfer from one host to another. Recent literature
hints at a misunderstanding of the difference between
active, parasite-driven migration and passive, circula-
tion-driven movement of the parasite or parasite-
infected cells in the various bodily fluids of mosquito
and mammalian hosts. Because both active migration
and passive transport could be targeted in different
ways to interfere with the parasite, a distinction be-
tween the two ways the parasite uses to get from one
location to another is essential. We discuss the two
types of motion needed for parasite dissemination
and elaborate on how they could be targeted by future
vaccines or drugs.

Of sporozoites and skin: the parasite’s journey to
establish infection in the vertebrate host
A recent review on drug discovery in malaria rightly
highlighted the need to block all stages of the parasite
to achieve disease elimination [1]. Indeed, the complexity
of the parasite life cycle, as this review points out, provides
many challenges and opportunities for drug and vaccine
design. Nonetheless, the authors miss what is likely an
Achilles’ heel of the parasite lifecycle in the mammalian
host, namely the ‘skin phase’ [2,3]. This omission of the
parasite’s obligatory step in the skin can be found surpris-
ingly often in the malaria research and clinical literature
[1,4–8]. These reports mention that human infection
begins with the transmission of sporozoites into the blood-
stream during the bite of an infected female Anopheles
mosquito. This implies direct injection of parasites into
the bloodstream but overlooks the fact that sporozoites are
predominantly, if not completely, injected extravascularly
into the skin, where they need to be motile to cross
the dermis and enter into either blood or lymph vessels
[9–15]. The omission of the skin phase is unfortunate
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because the necessity of active parasite migration in the
skin has opened up new opportunities for stopping the
parasites before they enter the bloodstream, and skin
migration may be an excellent drug and vaccine target.
Indeed, sporozoite mutants with motility defects are
significantly more attenuated after inoculation into
the skin compared to after intravenous inoculation
[16–19]. Similarly, parasite mutants defective in cell tra-
versal activity, the sporozoite capacity to wound and
transmigrate a host cell, also show impaired progression
in the skin [20–22]. Furthermore, antibodies that immo-
bilize sporozoites have a clear effect on sporozoite motility
in the dermis [23–25]. The majority of the time that
sporozoites are in an extracellular environment is spent
in the dermis, where they are likely to be much more
vulnerable to antibodies and possibly drugs, compared
to the blood circulation where they only spend minutes,
and the liver where they rapidly find and invade hepato-
cytes (Table 1) [15,26–29].

Statements such as ‘motile sporozoites migrate to the
liver and invade hepatocytes’ [1] could lead to the im-
pression that sporozoites use their capacity for motility to
actively migrate in the blood to the liver. However, once
sporozoites are in the blood they are carried by the blood
flow until they arrest on the endothelium of the liver. In
the liver, sporozoites actively migrate again to cross the
endothelial barrier and enter hepatocytes [30,31]. The
capacity to actively migrate is clearly important for
sporozoite entry into hepatocytes [19,32]. However, fast
and robust motility is only needed in the skin because
diminished motility still allows sporozoites to effectively
enter the liver if they are injected by syringe directly into
the bloodstream [16–19,21,33]. This suggests that the
malaria parasite has evolved a high speed specifically to
cross the dermis, a finding that might well be important
in intervention considerations that target their motility.
Indeed, a recent study suggests that antibodies that
block motility have a greater effect in the dermis (on
sporozoites inoculated by mosquito bites) than in the
circulation (on sporozoites inoculated directly into the
bloodstream) [23].

Nonetheless, the passively-moving sporozoites in the
blood might be targeted to prevent them from reaching
the liver, once it is known what proteins on the sporozoite
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Table 1. Summary of active movement and passive transport of Plasmodium at different life cycle stages

Parasite stage Organ/tissue/cell/dissemination

route

Event (active/passive) Estimated time for

event

Sporozoite Hemocoel Release from oocyst, passive transport in hemolymph Unknown; possibly

1 minute to 1 day

Salivary gland Invasion of glands Unknown; possibly

1–10 minutes

Proboscis Transport from mosquito to skin with flow of saliva �1 second

Skin Motility through tissue and invasion of vasculature �10–100 minutes

Lymphatic system Transport in lymph vessels, active movement in node �10–100 minutes

Bloodstream Transport to liver 1–10 minutes

Liver Cell traversal and hepatocyte invasion �1 minute

Merozoite Merosomes Bud off from infected hepatocytes, passive transport in

blood

�1–10 minutes

Erythrocytes in bloodstream Passive transport in blood after merosome rupture,

invasion of RBC; following RBC rupture, momentary

passive transport in blood before actively invading

another RBC

�1 minute

Gamete Mosquito midgut Active swimming by male gamete to fertilize female �1–10 minutes

Ookinete Mosquito midgut peritrophic

matrix and epithelia

Presumably passive transport until contact with

peritrophic matrix; active motility to traverse midgut

epithelia

�1–10 minutes

Active (red)/passive (blue).
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surface mediate this process. Several interactions are al-
ready known, including those of the thrombospondin-re-
lated anonymous protein (TRAP) and circumsporozoite
protein (CSP) with hepatic heparan sulfate proteoglycans
[34,35]. Clearly, the sporozoite’s journey from the point of
inoculation to final entry into a hepatocyte is complex and
requires many different proteins: while some interventions
might target an actively-migrating sporozoite, others may
only target sporozoite interactions with host factors once
the sporozoite enters the bloodstream or becomes arrested
in the liver. In addition, while some inhibitors may be
specific for a particular phase of the journey, others may
target sporozoites at all phases. Thus, the distinction
between passive, circulation-driven movement and active,
parasite-driven migration is not only of terminological
value (Figure 1 and Table 1).

Sporozoites inoculated into the dermis also enter the
lymphatic system. They can be seen migrating actively
within the dermis, and upon entering lymph vessels are
passively transported along with the lymph [3,10]. When
arriving at the subcapsular sinus of lymph nodes, they
appear to actively glide again and eventually encounter
phagocytic cells that appear to clear the vast majority of
parasites [10]. Because only few sporozoites are injected
into the skin during natural bites, and only about 20% of
these enter the lymphatic system [10,15], it is not clear if
there is an immune response to these parasites – and if so
whether it would be of a tolerogenic or activating nature
[36,37]. However, during immunization regimes where
sporozoites are used as live attenuated parasite vaccines,
the large number of parasites arriving at the lymph node
does elicit protective immune responses in mice [36,38]. Im-
portantly, RTS,S, the only malaria vaccine candidate that
has demonstrated any efficacy in Phase III trials, is a
subunit vaccine based on CSP, and follow-up studies gen-
erally suggest that protection is correlated to antibody
titers [39–41]. It is possible that these antibodies primarily
target sporozoites in the skin, where they spend most of
their time before invading hepatocytes. Again, it appears
358
important to distinguish between passive transport within
the lymphatic vessels, which would not be affected by
antibodies, and active motility in the skin and lymph node.
The latter could lead to fewer sporozoites arriving in the
draining lymph node, and thus lead to an altered immune
response during subsequent immunizations.

Sporozoite movements in the mosquito
Sporozoites must also travel in the mosquito, and this
journey also often suffers from similar confusion between
active migration and passive transport [42–44]. Sporo-
zoites develop in oocysts in the mosquito midgut wall,
and must exit into the hemocoel and go to the salivary
gland. In the hemocoel, sporozoites are passively trans-
ported by the movement of the mosquito hemolymph and,
although they are carried throughout the open circulatory
system of the mosquito, they appear to preferentially
recognize and invade salivary glands [16,32,45–48]. Simi-
larly to the sporozoites that make it into the bloodstream,
the parasites in the hemolymph have the capacity to
actively migrate but do not do so in the open circulation
of the mosquito. Only once sporozoites attach to the sali-
vary glands do they need to move across the basal mem-
brane and the acinar cells to accumulate in the salivary
cavity of these glands [49–51].

Interestingly, once sporozoites have gained access to the
salivary gland acinar cell, little forward motility can be
observed. Most parasites move back-and-forth with little
productive motility [51]. As the infected mosquito probes
for blood it ejects sporozoites along with its saliva. Once
again, the sporozoites are passively transported by the flow
of mosquito saliva. Thus a single parasite stage undergoes
several different ‘movement transitions’ (Figure 1 and
Table 1).

Moving onto other life stages
Importantly, not only the sporozoite stage undergoes cycles
of active migration and passive transport. After sporozoite
invasion of the host liver, merozoites are formed by the
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Figure 1. Active movement and passive transport transitions along the Plasmodium life cycle. Stages of active migration (red arrows) and passive transport (blue arrows).

Sporozoites emerge from the oocyst (1) and are passively transported within the hemolymph before actively migrating into the salivary glands (2). From there, they are

passively ejected with the saliva and take up active motility again in the skin (3). Once they enter either the lymph or blood, again they are passively transported to actively

enter either the lymph node or the liver parenchyma. Sporozoites that have entered the liver differentiate within a hepatocyte; following the development of exo-

erythrocytic forms, merosomes bud from the infected hepatocyte (4). After membrane rupture, merosomes release hundreds to thousands of merozoites into the blood that

briefly are carried by the blood before attaching to and actively invading erythrocytes (5). Within the erythrocyte, schizogony results in more merozoites that then egress

from cells. These merozoites are passively carried in the blood and, subsequently, actively invade nearby uninfected erythrocytes. Some merozoites actively invade and

develop into male or female gametocytes that await transmission into the arthropod host (6). In the mosquito, gamete maturation results in actively-moving male gametes

that fuse with females to produce a zygote (7). Zygotes develop into motile ookinetes that can actively traverse the mosquito peritrophic matrix and midgut epithelia (8) to

establish oocysts in the basal lamina of the insect host.
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thousands in infected hepatocytes, and these were long
thought to get into the bloodstream by simple rupture of
the hepatocyte, although it was not clear how they could
cross the endothelium to reach the bloodstream [52–
54]. Active migration was one possibility, because mero-
zoites possess the necessary gliding machinery; however, it
was discovered that small bags of merozoites bud off as
merosomes from the infected cells [55]. Merosomes rupture
to release merozoites [56] that presumably are passively
carried in the blood until they attach to and invade a red
blood cell (Figure 1). In observed static conditions, mer-
ozoites enter red blood cells by actively migrating across a
junction they establish between the two cells [57]. After
invasion, growth, and schizogony, new merozoites are
explosively released from the red blood cell [58], and are
briefly transported again within the blood before attaching
to and invading an uninfected blood cell (Figure 1 and
Table 1). Attachment to and invasion of red blood cells are
thought of as good targets for vaccines and possibly also
drugs [59,60]. Several proteins involved in either or both
processes are at different stages of subunit vaccine de-
velopment with the hope that antibodies against these
proteins could protect infected people by blocking the
access of the parasite to the red blood cell [61–63]. Apical
membrane antigen 1 (AMA1) and merozoite surface pro-
tein 1 (MSP1) are such candidates. The role of MSP1 (the
major surface antigen of merozoites) in mediating initial
attachment to target erythrocytes appears to be clear
[64]. However, the role played by AMA1 is contested –
initial data suggest a role in invasion whereas more
recent data indicate a role in attachment [65,66]. For
our discourse, understanding whether AMA1 functions in
invasion or attachment will determine when antibodies
need to act to prevent infection.

Not all merozoites that successfully invade proceed to
undergo schizogony and produce more merozoites. A
fraction of invaded parasites transform into male and
female gametocytes – parasites under cell cycle arrest
that are prepared for transmission back to the mosquito
[67]. After gametogenesis, the male gamete actively
swims within the bolus of the blood-meal in the mosquito
stomach and fuses with the female gamete [68]. Trans-
mission-blocking approaches can target multiple aspects:
gamete maturation, the active motility of the male gam-
ete, or the docking of the two cells [69–73]. Finally, after
fertilization and zygote formation, a motile egg cell, the
ookinete, forms and actively penetrates the peritrophic
matrix surrounding the blood meal and the underlying
epithelial cells of the mosquito midgut. Before attaching
to the matrix, the ookinete may not actively move in the
mosquito midgut because this environment provides little
traction for gliding motility. However, once attached to
the mosquito midgut, the ookinete actively moves across
this cell layer [74] (Figure 1). Secreted or surface proteins
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of the ookinetes that assist in traversal again could serve
as targets for transmission-blocking antibodies or pep-
tides, and thus prevent oocyst formation in the mosquito
[75–77].

Opportunities in stopping parasite movement
The complexities of the Plasmodium life cycle provide
many challenges in fully understanding how the parasite
proliferates and disseminates, but also offer us multiple
opportunities for intervention. Indeed, developing drug or
vaccine combinations that could target multiple proteins
and stages is desirable [1]. It is our intention in this
article to point out that blocking the ability of the parasite
to actively move and/or interact with host factors for
invasion opens up both therapeutic and preventive oppor-
tunities. The skin serves as the first mammalian barrier
for the sporozoite, and is thus the first site where preven-
tive agents can be employed. The skin phase is a signifi-
cant bottleneck for the parasite both in terms of numbers
and exposure to antibody-mediated responses. Studies in
mice have supported the idea that antibody-mediated
responses can halt active movement and/or result in
complement-mediated  cytotoxicity of sporozoites in the
skin to prevent infection [23–25,78]. Hence, while one
could contemplate strategies to activate complement or
immune cells that stop the passively transported para-
sites in the blood, it might also be sensible to develop
strategies to block active migration. For example, if one
targets a conserved motility mechanism by a drug, this
could likewise block active migration of sporozoites, inva-
sion of erythrocytes by merozoites, or ookinete motility
[79]. There are indeed suggestions in the literature that
low molecular weight molecules could be used to stop
active parasite movement [80–86]. Perhaps potent and
parasite-selective inhibitors could be developed for for-
mulation in topical insect-repellant creams that would
serve as a malaria prophylaxis strategy. Compound li-
braries such as those made available by Medicines for
Malaria Venture could accelerate the discovery and de-
velopment of such molecules [87].

Concluding remarks
The malaria parasite undergoes alternating phases of
active and passive migration in different tissues during
its life cycle. The life cycle can be subdivided into at least
seven actively-motile stages and six stages in which it is
passively carried by the mosquito or mammalian host, each
presenting different opportunities as drug or vaccine tar-
gets. Appreciating the full complexity of this fascinating
parasite would allow for more targeted therapeutic inter-
ventions.
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