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All biologists who sample natural communities are plagued
with the problem of how well a sample reflects a community’s
“true” diversity. New genetic techniques have revealed exten-
sive microbial diversity that was previously undetected with
culture-dependent methods and morphological identification
(reviewed in references 2 and 46), but exhaustive inventories of
microbial communities still remain impractical. As a result, we
must rely on samples to inform us about the actual diversity of
microbial communities.

Ecologists studying the diversity of macroorganisms also
face this estimation problem and have designed tools to deal
with the problems of sampling (14, 25, 36). Sparked by the
availability of microbial diversity data, interest is emerging in
applying these tools to microbes. Reliable estimates of micro-
bial diversity would offer a means to address once intractable
questions, such as what processes control microbial diversity?
How do microbial communities affect ecosystem functioning?
How are human beings affecting microbial communities?

Several microbial studies have used diversity indices (39, 44),
estimated species richness (33, 43), and compared sample di-
versity with rarefaction curves (19, 40). Still others have pro-
posed new diversity statistics specific to microbial samples (69).
Despite the recent interest, however, the success of these tools
has not yet been evaluated for microbial communities, and
other potential approaches remain to be explored.

Here we compare the utility of various statistical approaches
for assessing the diversity of microbial communities. First, we
show examples of communities in which macroorganisms are
as diverse as some microbial communities, suggesting that di-
versity estimation methods developed for macroorganisms may
be appropriate for microbial samples. Second, we review these
methods and discuss how to evaluate the success of diversity
estimators for microbial communities for which the true diver-
sity is unknown. We argue that even without knowing the
“truth,” it is possible to rigorously compare relative diversity
among communities. Finally, we apply some of these diversity
measures to microbial data sets and examine how the confi-
dence of the measures changes with sample size.

Throughout the paper, we use the term diversity to mean
richness, or the number of types. We also use the term micro-
bial with bacteria in mind, although much of the discussion is
applicable to other microbes. For clarity, we will often refer to
species as the measured unit of diversity, but our discussion
can be applied to any operational taxonomic units (OTUs),
such as the number of unique terminal restriction fragments
(35) or number of 16S ribosomal DNA (rDNA) sequence
similarity groups (41). Finally, we are concerned here with
estimating richness and do not address how this diversity is
related to functional diversity (1).

ARE MICROBES TOO DIVERSE TO COUNT?

In any community, the number of types of organisms
observed increases with sampling effort until all types are ob-
served. The relationship between the number of types ob-
served and sampling effort gives information about the total
diversity of the sampled community. This pattern can be visu-
alized by plotting an accumulation or a rank-abundance curve.

An accumulation curve is a plot of the cumulative number of
types observed versus sampling effort. Figure 1 shows the ac-
cumulation curves for samples from five communities: bacteria
from a human mouth (33), soil bacteria (6), tropical moths
(56), tropical birds (J. B. Hughes, unpublished data), and tem-
perate forests (26). We standardized the data sets by the num-
ber of individuals collected to compare the shapes of the
curves. Differences in the richness and relative abundances of
species in the sampled communities underlie the differences in
the shape of the curves. Because all communities contain a
finite number of species, if the surveyors continued to sample,
the curves would eventually reach an asymptote at the actual
community richness (number of types). Thus, the curves con-
tain information about how well the communities have been
sampled (i.e., what fraction of the species in the community
have been detected). The more concave-downward the curve,
the better sampled the community.

The idea that microbial diversity cannot be estimated comes
from the fact that many microbial accumulation curves are
linear or close to linear because of high diversity, small sample
sizes, or both. Indeed, the accumulation curve of East Ama-
zonian soil bacteria represents the worst-case scenario (Fig. 1).
Every individual identified was a different type; therefore, this
sample supplies no information about how well the community
has been sampled. At the other extreme, the plant and bird
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communities plotted in Fig. 1 are well sampled, and the sam-
ples therefore contain considerable information about total
richness. The two intermediate curves provide the most telling
comparison, however. Even though the moth sample is much
larger than the mouth bacteria sample (4,538 versus 264 indi-
viduals), the shape of the curves is similar. In other words, the
communities have been sampled with roughly equivalent in-
tensity relative to their overall richness.

Another way to compare how well communities have been
sampled is to plot their rank-abundance curves. The species
are ordered from most to least abundant on the x axis, and the
abundance of each type observed is plotted on the y axis. The
moth and soil bacteria communities exhibit a similar pattern
(Fig. 2), one that is typical of superdiverse communities such as
tropical insects. A few species in the sample are abundant, but
most are rare, producing the long right-hand tail on the rank-
abundance curve.

If these organisms were sampled on the same spatial scale,
there is no doubt that soil bacterial diversity would be higher
than moth diversity. These comparisons suggest, however, that
our ability to sample bacterial diversity in a human mouth or in
a few grams of some soils may be similar to our ability to
sample moth diversity in a few hundred square kilometers of
tropical forest. Thus, at least for some communities, microbi-
ologists may be able to coopt techniques that ecologists use to
estimate and compare the richness of macroorganisms.

Ultimately, microbes—like tropical insects—are too diverse
to count exhaustively. While it would be useful to know the
actual diversity of different microbial communities, most diver-
sity questions address how diversity changes across biotic and
abiotic gradients, such as disturbance, productivity, area, lati-
tude, and resource heterogeneity. The answers to these ques-
tions require knowing only relative diversities among sites,
over time, and under different treatment regimens. Using this
approach, the relationships between insect diversity and many
environmental variables have been well studied (50, 57, 63, 64),

even though estimates of the total number of insect species
range over three orders of magnitude (22, 54).

SOME POSSIBLE TOOLS: RAREFACTION AND
RICHNESS ESTIMATORS

A variety of statistical approaches have been developed to
compare and estimate species richness from samples of mac-
roorganisms. In this section, we consider the suitability of four
approaches for microbial diversity studies.

The first approach, rarefaction, has been adopted recently
by a number of microbiologists (4, 19, 40). Rarefaction com-
pares observed richness among sites, treatments, or habitats
that have been unequally sampled. A rarefied curve results
from averaging randomizations of the observed accumulation
curve (25). The variance around the repeated randomizations
allows one to compare the observed richness among samples,
but it is distinct from a measure of confidence about the actual
richness in the communities.

In contrast to rarefaction, richness estimators estimate the
total richness of a community from a sample, and the esti-
mates can then be compared across samples. These estimators
fall into three main classes: extrapolation from accumulation
curves, parametric estimators, and nonparametric estimators
(14, 23, 47). To date, we have found only two studies that apply
richness estimators to microbial data (33, 43).

Most curve extrapolation methods use the observed accu-
mulation curve to fit an assumed functional form that models
the process of observing new species as sampling effort in-
creases. The asymptote of this curve, or the species richness
expected at infinite effort, is then estimated. These models
include the Michaelis-Menten equation (13, 51) and the neg-
ative exponential function (61). The benefit of estimating di-
versity with such extrapolation methods is that once a species
has been counted, it does not need to be counted again. Hence,
a surveyor can focus effort on identifying new, generally rarer,
species. The downside is that for diverse communities in which

FIG. 1. Accumulation curves for Michigan plants (✖; n � 1,783)
(26), Costa Rican birds (Œ; n � 5,007) (J. B. Hughes, unpublished
data), human oral bacteria (E; n � 264) (33), Costa Rican moths (■;
n � 4,538) (56), and East Amazonian soil bacteria (F; n � 98) (6).
Curves are averaged over 100 simulations using the computer program
EstimateS and are standardized for the number of individuals and
species observed.

FIG. 2. Rank-abundance curves for (a) tropical moths (n � 4,538)
(56) and (b) temperate soil bacteria (n � 137) (39). The two most
abundant species of moths (396 and 173 individuals) are excluded from
panel a to shorten the y axis.
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only a small fraction of species is detected, several curves often
fit equally well but predict very different asymptotes (61). This
approach therefore requires data from relatively well sampled
communities, so at present curve extrapolation methods do not
seem promising for estimating microbial diversity in most nat-
ural environments.

Parametric estimators are another class of estimation meth-
ods. These methods estimate the number of unobserved spe-
cies in the community by fitting sample data to models of
relative species abundances. These models include the lognor-
mal (49) and Poisson lognormal (7). For instance, Pielou (48)
derived an estimator that assumes species abundances are dis-
tributed lognormally; that is, if species are assigned to log
abundance classes, the distribution of species among these
classes is normal. By fitting sample data to the lognormal
distribution, the parameters of the curve can be evaluated.
Pielou’s estimator uses these parameter values to estimate the
number of species that remain unobserved and thereby esti-
mate the total number of species in the community.

There are three main impediments to using parametric es-
timators for any community. First, data on relative species
abundances are needed. For macroorganisms, often only the
presence or absence of a species in a sample or quadrat is
recorded. In contrast, data on relative OTU abundances of
microbes are often collected (see discussion below about po-
tential biases). Second, one has to make an assumption about
the true abundance distribution of a community. Although
most communities of macroorganisms seem to display a log-
normal pattern of species abundance (17, 36, 66), there is still
controversy as to which models fit best (24, 30). In the absence
of a variety of large microbial data sets, it is not clear which, if
any, of the proposed distribution models describe microbial
communities. Finally, even if one of these models is a good
approximation of relative abundances in microbial communi-
ties, parametric estimators require large data sets to evaluate
the distribution parameters. The largest microbial data sets
currently available include only a few hundred individuals.

The final class of estimation methods, nonparametric esti-
mators, is the most promising for microbial studies. These
estimators are adapted from mark-release-recapture (MRR)
statistics for estimating the size of animal populations (32, 59).
Nonparametric estimators based on MRR methods consider
the proportion of species that have been observed before (“re-
captured”) to those that are observed only once. In a very
diverse community, the probability that a species will be ob-
served more than once will be low, and most species will only
be represented by one individual in a sample. In a depauperate
community, the probability that a species will be observed
more than once will be higher, and many species will be ob-
served multiple times in a sample.

The Chao1 and abundance-based coverage estimators (ACE)
use this MRR-like ratio to estimate richness by adding a cor-
rection factor to the observed number of species (9, 11). (For
reviews of these and other nonparametric estimators, see Col-
well and Coddington [14] and Chazdon et al. [12].) For in-
stance, Chao1 estimates total species richness as

SChao1 � Sobs �
n1

2

2n2

where Sobs is the number of observed species, n1 is the number
of singletons (species captured once), and n2 is the number of
doubletons (species captured twice) (9). Chao (9) noted that
this index is particularly useful for data sets skewed toward the
low-abundance classes, as is likely to be the case with microbes.

The ACE (10) incorporate data from all species with fewer
than 10 individuals, rather than just singletons and doubletons.
ACE estimates species richness as

SACE � Sabund �
Srare

CACE
�

F1

CACE
�ACE

2

where Srare is the number of rare samples (sampled abun-
dances �10) and Sabund is the number of abundant species
(sampled abundances �10). Note that Srare � Sabund equals
the total number of species observed. CACE � 1 � F1/Nrare

estimates the sample coverage, where F1 is the number of spe-

cies with i individuals and Nrare � ¥
i�1

10 iFi. Finally,

�ACE
2 � max� Srare�

i�1

10

i�i � 1�Fi

CACE �Nrare� �Nrare � 1�
� 1, 0�

which estimates the coefficient of variation of the Fi’s (R.
Colwell, User’s Guide to EstimateS 5 [http://viceroy.eeb.u-
conn.edu/estimates]).

Both Chao1 and ACE underestimate true richness at low
sample sizes. For example, the maximum value of SChao1 is
(S2

obs � 1)/2 when one species in the sample is a doubleton
and all others are singletons. Thus, SChao1 will strongly corre-
late with sample size until Sobs reaches at least the square root
of twice the total richness (14).

EVALUATING RICHNESS ESTIMATORS

Given the variety of possible diversity estimators, how does
one evaluate their utility? Clearly, the most desirable estimator
is one that is both precise and unbiased. Precision describes the
variation of the estimates from all possible samples that can be
taken from the population. Bias describes the difference be-
tween the expected value of the estimator and the true, un-
known richness of the community being sampled (in other
words, whether the estimator consistently under- or overesti-
mates the true richness).

To test for bias, one needs to know the true richness to
compare against the sample estimates. As yet, this comparison
is impossible for microbes, because no communities have been
exhaustively sampled. The bias of richness estimators has only
been tested in a few natural communities in which the exact
abundance of every species in an area is known (12, 14, 15, 26,
47).

In contrast, precision is a relatively simple property to assess.
With multiple samples (or one large sample) from a microbial
community, the variance of microbial richness estimates can be
calculated and compared. Moreover, most ecological questions
require only comparisons of relative diversity. For these ques-
tions, an estimator that is consistent with repeated sampling (is
precise) is often more useful than one that on average correctly
predicts true richness (has the lowest bias). Thus, if we use
diversity measures for relative comparisons, we avoid the prob-
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lem of not being able to measure bias. (This assumes that the
bias of an estimator does not differ so radically among com-
munities that it disrupts the relative order of the estimates. In
the absence of alternative evidence, this initial assumption
seems appropriate.)

Chao (8) derives a closed-form solution for the variance of
SChao1:

Var�SChao1� � n2�m4

4 � m3 �
m2

2 �, where m �
n1

n2

This formula estimates the precision of Chao1; that is, it esti-
mates the variance of richness estimates that one expects from
multiple samples. A closed-form solution of variance for the
ACE has not yet been derived.

Comparisons of relative species richness based on rarefac-
tion may seem more reliable than comparisons using extrapo-
lations that require a number of assumptions, but rarefaction is
limited for two reasons. First, rarefaction compares samples,
not communities. The error bars around a rarefaction curve
describe the variation due to reordering of subsamples within
the collected sample, not the precision of the observed rich-
ness. In contrast, a measure of precision would describe the
variation in the number of species expected to be observed if
the community were sampled repeatedly. It is possible to esti-
mate the precision of rarefaction curves, for instance, by boot-
strapping (20). Error bars derived by this method allow the
detection of significant differences in observed richness be-
tween communities.

Second, the rank order of observed richness values does not
necessarily correspond to relative total richness, because rar-
efaction analyses do not exclude the possibility that the species
accumulation curves cross at a higher sample size (34). In con-
trast, species richness estimators take the shape of the accu-
mulation curve into account to determine total richness. Thus,
in theory these estimators can predict a crossover of the accu-
mulation curves and thereby better predict relative total rich-
ness.

CASE STUDIES

In terms of both underlying assumptions and their ability to
be evaluated, nonparametric estimators are a promising tool
for assessing microbial diversity. To further investigate their
potential, we applied these techniques to four microbial data
sets. In particular, we compared the use of nonparametric
estimators with the rarefaction approach and investigated how
the precision of their estimates changes with sample size.
These four data sets were among the largest available and
represented a range of habitat types and environmental gradi-
ents. We came across a number of additional data sets that
would also have been appropriate for these analyses (19, 53),
although others of comparable size were too diverse to be
analyzed with these techniques (5, 45).

The analyses were performed with EstimateS (version 5.0.1;
R. Colwell, University of Connecticut [http://viceroy.eeb.uconn
.edu/estimates]). For the purposes of inputting data into the
program, we treated each cloned sequence as a separate sam-
ple. We ran 100 randomizations for all tests. Further random-
izations did not change the results.

Human mouth and gut. Two of the best-sampled microbial
communities are from human habitats. Kroes et al. (33) sam-
pled subgingival plaque from a human mouth. They used PCR
to amplify the bacterial 16S rDNA, created clone libraries from
the amplified DNA, and then sequenced 264 clones. Kroes et
al. defined an OTU as a 16S rDNA sequence group in which
sequences differed by �1%. By this definition, they found 59
distinct OTUs from their sample of 264 16S rDNA sequences.
Although the accumulation curve does not reach an asymptote,
it is not linear (Fig. 3). Thus, we can try to estimate total OTU
richness. For these data, the Chao1 estimator levels off at 123
OTUs, suggesting that, after that point, the Chao1 estimate is
relatively independent of sample size. In contrast, the ACE
does not plateau as sample size increases, indicating that the
estimate is not independent of sample size.

Suau et al. (65) investigated the diversity of bacteria in a
human gut. Similar to Kroes et al. (33), they amplified, cloned,
and sequenced 16S rDNA fragments. Their definition of an
OTU differed slightly from that in the Kroes et al. study, how-
ever; they define an OTU as a 16S rDNA sequence group in
which sequences differed by �2%. With this definition, they
identified 82 OTUs from 284 clones.

Because the two studies use slightly different definitions of
an OTU, the data for the mouth and gut bacteria are not
entirely comparable. Their contrast does demonstrate the ap-
plication of these approaches, however. After an initial in-
crease, the mean Chao1 estimate for both communities is rel-
atively level as sample size increases, and therefore we can
compare the estimates at the highest sample size for each com-
munity (Fig. 4). We used a log transformation to calculate the
confidence intervals (CIs) because the distribution of estimates
is not normal (8). Given the OTU definitions, total richness of
the mouth and gut bacterial communities is not significantly
different, as estimated by Chao1. Chao1 estimates that the
mouth community has 123 OTUs (95% CIs, 93 and 180), and
the gut community has 135 OTUs (95% CIs, 110 and 170).

What do the CIs say about the Chao1 estimate? The CIs
estimate the precision of the richness estimates. In other
words, 95% of new samples of 264 clones from the same

FIG. 3. Observed and estimated OTU richness of bacteria in a
human mouth (33) versus sample size. The number of OTUs observed
for a given sample size, or the accumulation curve, is averaged over 50
simulations (E). Estimated OTU richness is plotted for Chaol (F) and
ACE (Œ) estimators.
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person’s mouth are predicted to yield Chao1 estimates that fall
within this range. Because the CIs overlap, one cannot reject
the null hypothesis at the significance level of 0.05 that there is
no difference between the richness of the mouth and gut com-
munities. The CIs do not address how close the estimates are
to the true total richness (i.e., bias) or whether these samples
are representative of other people’s mouths or guts.

Another question is how much more sampling is needed to
detect a significant difference between two estimates, which in
this case differ by only 12 OTUs. The range of the CIs initially
increases with sample size, peaks, and then decreases expo-
nentially. To obtain a rough idea of how much further sam-
pling would be needed to detect a statistically significant dif-
ference, we estimated the size of the CIs for larger samples by
extrapolating from the decreasing portion of these curves.
Negative exponential curves for both the mouth [f(x) �
270e�0.0046x] and gut [f(x) � 120e�0.0026x] data fit well (r2 �
0.90 and r2 � 0.87, respectively). From these curves, it appears
that a sample of about 1,000 clones (four times the original
number) would be needed to detect a significant difference
between these communities (Fig. 5).

Rarefaction curves yield the same pattern of relative diver-
sity as Chao1; significantly more OTUs are observed in the gut
sample than the mouth sample (Fig. 6). At the highest shared
sample size (264 clones), 79 OTUs are observed in the gut
versus 59 OTUs in the mouth, and the 95% CIs do not overlap.
As discussed in the previous section, however, rarefaction
curves do not address the precision of the observed species
richness. Thus, although the rarefaction curves suggest that the
gut community is more diverse than the mouth community, we
cannot address the statistical significance of this evidence with
rarefaction curves.

Aquatic mesocosms. Bohannan and Leibold (unpublished
data) sampled bacterial diversity from three outdoor aquatic
mesocosms designed to mimic small ponds. The mesocosms
varied along a gradient of increasing primary productivity and
decreasing eukaryotic algal diversity, and all received the same
inoculum. DNA was extracted from samples from each meso-

cosm, and a region of 16S rDNA was PCR amplified with
Bacteria-specific primers, the amplicons were cloned, and the
clones were sequenced. The sequences were grouped into
OTUs using a definition of 95% similarity.

Bohannan and Leibold sequenced 158, 128, and 174 clones
from the low-, intermediate-, and high-productivity mesocosms,
respectively. The Chao1 estimates suggest that OTU richness
varies positively with productivity. The lowest productivity
pond contained 54 OTUs (95% CIs, 42 and 80), the interme-
diate pond contained 58 OTUs (43 and 90), and the high-pro-
ductivity pond contained an estimated 95 OTUs (73 and 140).
The richness of the high- and low-productivity ponds is signif-
icantly different at the 0.10 level (Fig. 7). Furthermore, the
Chao1 estimates for the high-productivity pond have not yet
stabilized (Fig. 7), suggesting that further sampling will result
in a greater difference in richness between the ponds with low
and high productivity.

FIG. 4. Chaol estimates of human mouth (E) and gut (F) bacterial
richness as a function of sample size. Error bars are 95% CIs and were
calculated with the variance formula derived by Chao (8). The dashed
lines are error bars for the mouth. The solid lines are error bars for the
gut.

FIG. 5. Average size of the 95% CIs of Chaol estimates for bacteria
in the human mouth (E) and gut (F) as sample size increases. These
CIs are the same as in Fig. 4, but only the decreasing portions of the
CIs are plotted. The curves are fitted negative exponential curves
[mouth, f(x) � 270e�0.0046x, r2 � 0.90; gut, f(x) � 120e�0.0026x, r2 �
0.87].

FIG. 6. Rarefaction curves of observed OTU richness in human
mouth (E) and gut (F) bacterial samples. The error bars are 95% CIs
and were calculated from the variance of the number of OTUs drawn
in 100 randomizations at each sample size.

VOL. 67, 2001 MINIREVIEW 4403
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Scottish soil. The most diverse data set that we analyzed is
for terrestrial soil. McCaig et al. (39) collected soil samples
from two grazed grasslands, allowing us to make a direct com-
parison of microbial diversity between these two habitats. One
grassland was previously reseeded and fertilized (improved),
and the other was not (unimproved). As in the studies de-
scribed above, bacterial 16S rDNA was PCR amplified and
cloned.

McCaig et al. sequenced 137 clones from the improved soil
and 138 clones from the unimproved soil. By their OTU def-
inition of �3% sequence difference, they identified 113 OTUs
in the improved habitat and 117 in the unimproved habitat.
The Chao1 estimates level off in both habitats at about 70
clones. Bacterial richness appears to be higher in the unim-
proved habitat (590 OTUs) than in the improved habitat (467

OTU), but the difference is not significant (Fig. 8). As before,
we can approximate how much further sampling is needed to
detect a significant difference by extrapolating the range of the
CIs at larger sample sizes. Negative exponential curves fit very
well for the improved [f(x) � 1,500e�0.012x, r2 � 0.96] and
unimproved [f(x) � 2,000e�0.011x, r2 � 0.94] soil samples.
Thus, if these estimates remain stable with more sampling,
about 250 clones are needed to detect a significant difference
at the 0.05 level (Fig. 9).

DISCUSSION

Comparisons of accumulation curves and rank-abundance
plots demonstrate that some bacterial communities have been
sampled as well as some macroorganism communities. There-
fore, evaluating microbial diversity with statistical approaches
available for macroorganisms seems feasible. We estimated
and compared microbial richness in a variety of habitats and
found that although the estimators depend on sample size,
most of the richness estimates stabilized with the sample sizes
available. We also made rough estimates of the sample sizes
needed to detect significant differences in diversity between
comparable samples.

Of course, these statistical approaches have their limitations.
For example, diversity comparisons require clear OTU def-
initions. Often microbial “species” are defined by a cutoff of
percent genetic similarity, leading some authors to charge that
microbial diversity studies adopt arbitrary species definitions
(62). This problem is not limited to microorganisms, however.
In fact, the debate over species definitions in eukaryotic or-
ganisms has persisted for decades (16, 18, 37, 38), and some
suggest that even in sexual organisms, “the prevalence of the
clearly defined species is a myth” (21).

Similarly, most of these approaches require data on the
relative frequencies of different OTUs, and many studies have
revealed that sampling biases accompany genetic surveys of
microbial diversity. For example, the abundances of amplified
genes in PCRs may not reflect the relative abundances of

FIG. 7. Chaol estimates of bacterial OTU richness in low- (■),
intermediate- (F), and high- (Œ) productivity ponds. Error bars are
90% CIs and were calculated with the variance formula derived by
Chao (8). The dotted, solid, and dashed bars are error bars for the
low-, intermediate-, and high-productivity mesocosms, respectively.

FIG. 8. Chaol estimates of bacterial OTU richness in improved (E)
and unimproved (F) soil as a function of sample size. Error bars are
95% CIs and were calculated with the variance formula derived by
Chao (8). The solid lines are error bars for the improved sample. The
dashed lines are error bars for the unimproved sample.

FIG. 9. Average size of the 95% CIs of Chaol estimates for the
improved (E) and unimproved (F) soil as the number of clones sam-
pled increases. These CIs are the same as in Fig. 8, but only the
decreasing portions of the CIs are plotted. The curves are fitted neg-
ative exponential curves [improved, f(x) � 1,500e�0.012x, r2 � 0.96;
unimproved, f(x) � 2,000e�0.011x, R2 � 0.94].
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template DNA because of differences in primer binding and
elongation efficiency (52, 55, 67). Larger organisms differ in
their ease of detection as well, and hence samples may not be
representative of the species frequencies in a community. For
example, butterfly species differ in their attraction to bait traps
(29), and bird species’ vocalizations are unequally detectable
(58).

The fact that most questions about the structure and func-
tion of communities require relative comparisons overcomes
many of the problems with species definitions and sampling
biases. As long as the measurement unit is defined and held
constant, diversity can be compared among sites or treatments.
Likewise, to minimize the effect of sampling biases, multiple
techniques or genes can be employed to increase the robust-
ness of relative comparisons (44).

Further work is needed to investigate the general applica-
bility of these approaches for microbial diversity studies. Ide-
ally, large data sets should be gathered to evaluate better the
bias and precision of different nonparametric estimators, such
as Chao1 and ACE. The performance of richness estimators
should also be measured in terms of their ability to predict the
true ordering of richness among samples. Large data sets are
also needed to investigate how often microbial accumulation
curves cross with additional sampling. If the accumulation
curves cross only infrequently, then, in combination with meth-
ods such as bootstrapping (20), rarefaction curves may be a
valuable way to compare the relative diversity of communities.

Even without exhaustive surveys of microbial communities,
computer simulations may provide useful insights. Simulated
communities have already been used to compare the bias and
precision of some diversity estimators (3, 27, 31, 68, 71). These
studies could be extended to examine the ability of different
estimators to predict the correct order of richness among sam-
ples and the conditions under which rarefaction curves are
likely to cross. Of course, simulation studies cannot be used as
a substitute for real data, as they require input on realistic
species abundance distributions of microbial communities.

Although our discussion has been directed towards data
collected from clone libraries, genetic techniques that do not
depend on cloning also offer promising opportunities for quick-
ly analyzing community diversity. For instance, denaturing gra-
dient gel electrophoresis (DGGE) patterns of amplified 16s
rDNA have been used as estimates of microbial diversity (42,
44). Incidence-based nonparametric estimators (R. Colwell,
User’s Guide to EstimateS 5 [http://viceroy.eeb.uconn.edu
/estimates]), such as the jackknife and bootstrap (60, 70), use
presence-absence data and could be used with DGGE data to
estimate total richness. Likewise, oligonucleotide probes can
be used to detect the presence of a subset of microbial diversity
in a sample (28). Once the specific probes have been devel-
oped, many samples can be analyzed relatively quickly, and
incidence estimators could be adapted to extrapolate these
patterns to the entire community.

In conclusion, while microbiologists should be cautious about
sampling biases and use clear OTU definitions, our results
suggest that comparisons among estimates of microbial diver-
sity are possible. Nonparametric estimators show particular
promise for microbial data and in some habitats may require
sample sizes of only 200 to 1,000 clones to detect richness
differences of only tens of species. While daunting less than a

decade ago, sequencing this number of clones is reasonable
with the development of high-throughput sequencing tech-
nology. Augmenting this new technology with statistical ap-
proaches borrowed from “macrobial” biologists offers a pow-
erful means to study the ecology and evolution of microbial
diversity in natural environments.
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53. Rappé, M. S., P. F. Kemp, and S. J. Giovannoni. 1997. Phylogenetic diversity

of marine coastal picoplankton 16S rRNA genes cloned from the continental
shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42:811–826.

54. Raven, P. H. 1983. The challenge of tropical biology. Bull. ESA Spring:4–12.
55. Reysenbach, A.-L., L. J. Giver, G. S. Wickham, and N. R. Pace. 1992. Dif-

ferential amplification of rRNA genes by polymerase chain reaction. Appl.
Environ. Microbiol. 58:3417–3418.

56. Ricketts, T. H., G. C. Daily, P. R. Ehrlich, and J. P. Fay. 2001. Countryside
biogeography of moths in native and human-dominated habitats. Conserv.
Biol. 15:378–388.

57. Samways, M. J. 1994. Insect conservation biology. Chapman & Hall, Lon-
don, England.

58. Schieck, J. 1997. Biased detection of bird vocalizations affects comparisons
of bird abundance among forested habitats. Condor 99:179–190.

59. Seber, G. A. F. 1973. The estimation of animal abundance and related
parameters. Griffin, London, England.

60. Smith, E. P., and G. Van Belle. 1984. Nonparametric estimation of species
richness. Biometrics 40:119–129.

61. Soberón, J., and J. Llorente. 1993. The use of species accumulation functions
for the prediction of species richness. Conserv. Biol. 7:480–488.

62. Staley, J. T. 1997. Biodiversity: are microbial species threatened? Curr.
Opin. Biotechnol. 8:340–345.

63. Stork, N. E., J. Adis, and R. K. Didham. 1997. Canopy arthropods. Chapman
& Hall, London, England.

64. Strong, D. R., J. H. Lawton, and R. Southwood. 1984. Insects on plants:
community patterns and mechanisms. Harvard University Press, Cambridge,
Mass.

65. Suau, A., R. Bonnet, M. Sutren, J.-J. Godon, G. Gibson, M. D. Collins, and
J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex
communities reveals many novel molecular species within the human gut.
Appl. Environ. Microbiol. 65:4799–4807.

66. Sugihara, G. 1980. Minimal community structure: an explanation of species
abundance patterns. Am. Nat. 116:770–787.

67. Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing
in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ.
Microbiol. 62:625–630.

68. Walther, B. A., and S. Morand. 1998. Comparative performance of species
richness estimation methods. Parasitology 116:395–405.

69. Watve, M. G., and R. M. Gangal. 1996. Problems in measuring bacterial
diversity and a possible solution. Appl. Environ. Microbiol. 62:4299–4301.

70. Zahl, S. 1977. Jackknifing an index of diversity. Ecology 58:907–913.
71. Zelmer, D. A., and G. W. Esch. 1999. Robust estimation of parasite compo-

nent community richness. J. Parasitol. 85:592–594.

4406 MINIREVIEW APPL. ENVIRON. MICROBIOL.

 on July 3, 2018 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


ERRATUM

Counting the Uncountable: Statistical Approaches to
Estimating Microbial Diversity

JENNIFER B. HUGHES, JESSICA J. HELLMANN, TAYLOR H. RICKETTS,
AND BRENDAN J. M. BOHANNAN

Department of Biological Sciences, Stanford University,
Stanford, California 94305-5020

Volume 67, no. 10, p. 4399–4406, 2001. Page 4402, legend to Fig. 3: lines 4 and 5 should read “. . .simulations (Œ). Estimated
OTU richness is plotted for Chao1 (�) and ACE (�) estimators.”
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