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A review of the global burden, novel diagnostics, 
therapeutics, and vaccine targets for cryptosporidium
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Jeff rey W Priest, David S Roos, Boris Striepen, R C Andrew Thompson, Honorine D Ward, Wesley A Van Voorhis, Lihua Xiao, Guan Zhu, Eric R Houpt

Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in 
immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest 
major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identifi ed as an 
important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries 
have confi rmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic 
tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-
detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. 
Therapy has some eff ect in healthy hosts and no proven effi  cacy in patients with AIDS. Use of cryptosporidium 
genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess 
the effi  cacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for 
successful vaccines, and several are in development; however, surrogates of protection are not well defi ned. Improved 
methods for propagation and genetic manipulation of the organism would be signifi cant advances.

Introduction
Cryptosporidium was identifi ed as a cause of human 
infection in 1976.1 During the early 1980s, crypto-
sporidiosis was recognised as the major cause of 
chronic diarrhoea in patients with AIDS, as a cause of 
zoonotic and waterborne outbreaks of diarrhoea, and as 
a cause of diarrhoea in children.2–5 By the mid-1990s, 
crypto sporidium was known to be ubiquitous and was 
linked with childhood malnutrition and premature 
death in low-resource settings. A massive waterborne 
epidemic aff ected more than 400 000 people in 
Milwaukee, WI, USA, in 1993.6 Despite this knowledge, 
cryptosporidiosis is substantially under-recognised and 
underdiagnosed, treatments are suboptimum, and 
preventive measures are incomplete. Even in settings 
such as the USA where modern diagnostics are widely 
available, estimates state that only about 1% of cases are 
diagnosed and reported.7

Recent advances in knowledge are shifting opinions of 
the epidemiology of cryptosporidiosis, and have increased 
estimates of the global burden of disease.8 To identify 
potential gaps and opportunities for future studies, the US 
Foundation for the National Institutes of Health convened 
a group of experts to discuss advances in the epidemiology, 
diagnosis, therapeutics, and immunisation for cryptospori-
diosis. In this Review, we summarise discussions of this 
meeting, and provide a more in-depth review of published 
research.

Epidemiology
Disease burden
Protozoa of the genus Cryptosporidium have a global 
distribution. Early studies suggested that crypto-
sporidium is in 1% of stools of hosts who are 
immunocompetent in high-income countries and in 
5–10% of stools of hosts in low-resource settings.9 

Results of recent studies with PCR and antigen detection 
suggest that previous studies underestimated the 
frequency of infection, identifying cryptosporidium in 
15–25% of children with diarrhoea.9–13 Cryptosporidiosis 
is associated with longer duration of diarrhoea and 
greater childhood morbidity and mortality than are other 
causes,14,15 and is particularly associated with prolonged 
diarrhoea (7–14 days) and persistent diarrhoea 
(≥14 days).16,17 Results of a cross-sectional study in 
Uganda showed that mortality was higher among 
children with diarrhoeal disease with cryptosporidium 
than among those without.12 Results of cohort studies 
have consistently shown that younger age was associated 
with high risk of infection. For example, in a multicentre 
study of children younger than 5 years in India,18 75% of 
cases were in children younger than 2 years. Many 
studies suggest that cryptosporidium infection is 
associated with malnutrition and growth defi cits in 
children.19–22 Results of a cohort study of children in 
Peru23 showed that even asymptomatic infection was 
associated with poor growth. Symptomatic crypto-
sporidiosis stunted weight gain more than did 
asymptomatic infection, but asymptomatic infection 
was twice as common and might have a greater overall 
adverse eff ect on child growth.23

The Global Enteric Multicentre Study—which sought 
to assess the causes, burden, clinical syndromes, and 
adverse outcomes of moderate-to-severe diarrhoea in 
children at seven sites in sub-Saharan Africa and south 
Asia—identifi ed cryptosporidium as one of the four 
major contributors to moderate-to-severe diarrhoeal 
diseases during the fi rst 2 years of life at all sites.24 

Cryptosporidium was second only to rotavirus as a cause 
of moderate-to-severe diarrhoea in children younger than 
2 years. At a follow-up visit 2–3 months after enrolment, 
crypto sporidiosis was associated with a 2–3 times higher 
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risk of mortality among children aged 12–23 months with 
moderate-to-severe diarrhoea than in controls without 
diarrhoea.

Microbiology
Molecular methods have enabled characterisation of 
Cryptosporidium species, which diff er in epidemiology.25 
Although human infections have been noted with more 
than 15 species, most infections worldwide have been 
attributed to Cryptosporidium hominis and Cryptosporidium 
parvum. Genome sequences for both species26,27 are 
available on CryptoDB.28 C hominis was the main species 
causing childhood diarrhoea in studies from Peru, Brazil, 
Bangladesh, and India.29–32 In a study in the UK, C parvum 
was more common in rural populations, associated with 
animal exposure, and peaked in the spring, whereas 
C hominis was more urban, associated with young 
children, and peaked in the late summer and autumn.33 In 
Peru, infecting species did not diff er with age of infection, 
socioeconomic status, or nutritional status. C hominis, 
especially subtype Ib, is associated with more oocyst 
shedding and symptoms including nausea, vomiting, and 
general malaise.29,34

Risk factors
Environmental factors associated with cryptosporidium 
infection also need to be better understood. Results of a 
longitudinal study in India35 showed that the burden of 
infection was equally high in children who lived in 
households that used either bottled water or used 
municipal water for drinking, suggesting that most 
transmission does not involve drinking water. Seasonal 
patterns might also be associated with an increased 
transmission risk.19 In Kenya, investigators detected a 
higher number of oocysts in surface waters at the end of 
the rainy season and at the beginning of the dry season 
compared with other times, consistent with the seasonal 
peak in human cryptosporidiosis in east Africa.36 A meta-
analysis examining the eff ects of seasonality37 showed 
that both high ambient temperature (more important in 
temperate countries) and high rainfall (more important 
in the tropics) were associated with an increased risk of 
cryptosporidiosis. Results of a study from Uganda38 
suggested the possibility of respiratory transmission in 
immunocompetent children.

Malnutrition in early childhood also increases the risk of 
diarrhoea with cryptosporidium. In a birth cohort in 
Bangladesh, stunting at birth was associated with 
subsequent cryptosporidium infection.39 Findings from a 
longitudinal study showed that children with a height-for-
age Z score of more than −1 SD less than the mean (ie, 
HAZ scores < −1SD) before infection were more likely to 
have persistent growth defi cits a year later than were 
children with HAZ scores of at least −1 SD before infection, 
in whom growth defecits were transient.19 In Brazil, 
children infected with C hominis had a persistent decrease 
in HAZ score 3–6 months after infection.30 The intestinal 

damage caused by cryptosporidium can result in long-
term cognitive defi cits, impaired immune response, and 
reduced vaccine effi  cacy.40

Pathogenesis of malnutrition in cryptosporidiosis
The mechanism by which cryptosporidium aff ects child 
growth seems be associated with infl ammatory damage 
to the small intestine.41 Impaired absorption and 
enhanced secretion might promote diarrhoeal disease 
and growth defi cits. Mouse models further show a 
greater burden of infection and greater damage to the 
ileum in malnourished animals versus healthy animals.42 
Results of studies in animals, children, and HIV positive 
people with diarrhoeal disease also suggest that alanyl-
glutamine might enhance intestinal repair and 
absorption and prevent further growth defi cits.43 The 
ApoE E4 allele has been associated with protection 
against growth defi cits in children with severe diarrhoeal 
disease, and results of studies in animals suggest 
possession of the ApoE E4 allele is associated with 
reduction in parasitic burden and infl ammatory 
damage.44

Diagnostics
Detection of cryptosporidium infection is based on 
analysis of stool samples by use of microscopy with 
tinctorial and fl uorescent stains or via antigen and 
nucleic acid detection (table 1). In-vitro propagation of 
the organisms is not possible.45 For epidemiological 
studies, serological tests might also be used. Microscopy 
is an important diagnostic method because of the low 
cost of reagents, but good staining and visual skills are 
necessary. The modifi ed acid-fast staining has about 70% 
sensitivity compared with immunofl uorescent antibody 
stains,46 but could miss more than half of cases compared 
with molecular methods. Technical improvements and 
cost reductions in fl uorescence microscopy, such as 
light-emitting diode light sources, enable testing with 
fl uorescent stains such as auramine-rhodamine that are 
more sensitive than is the traditional modifi ed acid-fast 
stain, but problems with specifi city can arise.

In the USA and Europe, reference laboratories often 
use immunofl uorescence microscopy as a gold standard. 
Other antigen detection formats, such as enzyme 
immune assay or immunochromatographic methods, 
are also commercially available, have higher throughput, 
and are being increasingly used for diagnosis. However, 
diagnostic sensitivities are variable (70% to 100%).46–48,52 
Some rapid tests have reduced specifi city and sensitivity 
for species other than C parvum or C hominis,53,49 and 
confi rmation of positive reactions is needed.49

PCR is increasingly used for detection of crypto-
sporidium and other enteric pathogens in research 
laboratories, and aff ords excellent sensitivity.50,54 Ampli-
fi cation of cryptosporidium gene encoding 18S rRNA is 
widely used for this purpose, but other genes have also 
been targeted. Molecular analysis is essential to 
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discriminate Cryptosporidium species. PCR with 
sequencing of about 800 base-pair fragment of the gene 
encoding 18S rRNA is commonly used for speciation.55,56 
Real-time assays based on smaller fragments have been 
described.50,53 Because C hominis and C parvum are similar 
(>96%) at the DNA sequence level,57 sequencing of the 
gp60 gene has been used for subtyping within species.58 
Multilocus methods are desirable but have not been 
standardised.59 Disruption of oocysts by bead-beating, 
freeze-thaw, boiling, or chemical lysis is necessary before 
DNA extraction.51,60 However, point-of-care molecular 
tests are in development that can use simplifi ed extraction 
methods.61 Multiplexed molecular diagnostics for 
enteropathogens often show that multiple infections are 
common in resource-poor settings both in individuals 
with diarrhoea and in healthy control individuals.62 Some 
data suggest quantitative load of cryptosporidium63 might 
correlate with increased disease severity, thus quantitative 
assays will be important for future studies and for 
assessment of drug regimens.

Serological assays for cryptosporidium are an 
important device for epidemiological studies because 
specifi c antibody responses develop after both 
symptomatic and asymptomatic infection. Whereas IgA 
responses are generally short-lived, IgG responses can 
persist for several months. Antibody to Cp23 seems to 
correlate with distant infection, whereas responses to 
Cp17 (also called gp15) suggest recent infection, and 
responses to P2 are associated with repeated infection.64 
These assays, adapted to a Luminex-based serodiagnostic 
platform, can be done with fi nger-prick blood collected 
on fi lter paper,65 or with oral fl uid.66

Therapeutics
Antiparasitic treatment for cryptosporidiosis is 
suboptimum.67 For individuals who are immuno-
compromised, improvement in cellular immune 
function is a key priority for management of crypto-
sporidiosis (eg, combination antiretroviral therapy for 
cryptosporidiosis in AIDS).67,68 However, substantial 
mortality occurs during initial treatment.69

Various drugs have been described with activity against 
cryptosporidium in vitro, in animal models, and in 
patients (table 2). Spiramycin, azithromycin, and 
immunoglobulin have not been effi  cacious in controlled 
trials in patients with AIDS.67 Results of two randomised, 
placebo-controlled trials of paromomycin showed little 
eff ect on symptoms and oocyst shedding,75,76 but the small 
sample sizes prohibited defi nitive conclusions.67 
Nitazoxanide is FDA-approved for treatment of 
cryptosporidiosis. Findings from randomised studies 
have shown a benefi cial eff ect in adults and children 
without HIV,70–72 with signifi cant reduction in mortality in 
malnourished children treated with nitazoxanide.72 
However, cessation of diarrhoea was recorded in only 56% 
of patients receiving nitazoxanide compared with 23% of 
patients receiving placebo.72 Moreover, results of three 

controlled trials involving patients with HIV not on 
eff ective antiretroviral therapy72–74 did not show overall 
improvement. Findings from in-vitro and animal studies 
suggest that drug combinations might have some 
effi  cacy.77 In the management of patients with HIV or 
AIDS, clinicians should consider symptomatic therapy, 
optimisation of antiretroviral therapy, and, perhaps, the 
inclusion of nitazoxanide or paromomycin.67,68

The availability of genome sequence and functional 
genomics data for C hominis, C parvum, and other species 
has provided researchers with new devices with which to 
explore unique metabolic pathways as targets for chemo-
therapy.26–28,78,79 For example, the calcium-dependent 
protein kinases are a conserved family of enzymes in 
plants and some apicomplexan parasites, including 
cryptosporidium.80,81 Structural analysis shows that 
apicocomplexan calcium-dependent protein kinases have 
a glycine as a gatekeeper residue for the ATP binding site, 
which makes a hydrophobic region more available for 
inhibitors active against C parvum in human cell lines 
and SCID/beige mice.81–83

Advantages Disadvantages

Microscopy Low technology
Widely available

Low sensitivity (about 70–80% with 
modifi ed acid-fast stain)45,46

Requires special stains and skilled 
technicians

Antigen 
detection

Good sensitivity (70–100%)45–48

Several commercially-available kits in 
enzyme immunoassay, 
immunofl uorescence assay, and 
immunochromatography test formats

Costly for resource-poor country settings

Nucleic acid 
amplifi cation

Excellent sensitivity45,49

Can speciate, subtype, and quantify50,51

Amenable to multiplexing for additional 
enteropathogen targets

Expensive instrumentation
Technically demanding, requires skilled 
laboratory technicians for DNA extraction 
and amplifi cation

Serological 
methods

Useful for surveillance purposes and 
discrimination of historical, recent, and 
repetitive infection

Research laboratory use only

Table 1: Trade-off s of diagnostic methods for cryptosporidium

Status Limitations

Nitazoxanide Approved for use for 
cryptosporidiosis but not with 
HIV co-infection

Effi  cacy 56–96% in healthy hosts70–72

Not eff ective in patients with advanced AIDS72–74

High cost and availability limit widespread use

Paromomycin Approved for use for other 
indications

Limited effi  cacy in patients with AIDS75,76

No controlled data in other groups

Azithromycin Approved for use for other 
indications

Not eff ective in patients with advanced AIDS67

Anecdotes of effi  cacy in combination in patients with AIDS

Rifaximin Approved for use for other 
indications

Anecdotes of responses in patients with AIDS67,68

Rifabutin Approved for use for other 
indications

Eff ective at prevention of cryptosporidiosis in studies of 
Mycobacterium avium prophylaxis67,68

HIV protease 
inhibitors

Approved for use for HIV 
treatment

Associated with resolution of cryptosporidiosis in 
patients with AIDS67,68

Partial effi  cacy against Cryptosporidium parvum in mouse 
models

Table 2: Chemotherapy of cryptosporidiosis
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Microtubule formation is another potential drug target. 
Dinitroanilines, including trifl uralin, are herbicides that 
block microtubule formation and inhibit cryptosporidial 
growth in vitro and in vivo.84–86 Furthermore, the 
development of hybrid compounds based on albendazole 
and trifl uralin led to the identifi cation of analogues with 
excellent in-vitro effi  cacy and 79–81% reductions in 
oocyst shedding in mice (Thompson RCA, unpublished).

Cryptosporidium has little ability to synthesise 
nutrients de novo, including aminoacids, nucleosides, 
and fatty acids.87 Many genes associated with metabolism 
have been lost, including apicoplast pathways, the 
mitochondrial respiratory chain, and hypoxanthine-
xanthine-guanine phosphoribosyl transferase.26 
Cryptosporidium relies on glycolysis to produce ATP, 
producing lactate, ethanol, and acetate end products. 
Thus, inhibitors of hexokinase and lactate 
dehydrogenase have some effi  cacy.88 Additionally, 
several proteins involved in fatty acid metabolism have 
been found on the parasitophorus vacuole membrane.89–91 
For example, Triacsin C and other drugs inhibit fatty 
acyl-CoA-binding protein and fatty acid-CoA synthetase, 
and show a reduction in C parvum oocyst production in 
vitro and in mice.91–93 A parasite cysteine protease 
inhibitor was also eff ective in vitro and in an animal 
model.94

Molecular evidence suggests lateral gene transfer from 
bacteria, providing potential targets for cryptosporidium 
chemotherapy.95,96 The catalysis of inosine mono-
phosphate to xanthosine monophosphate via inosine-5ʹ-
monophosphate dehydro genase (IMPDH) is a key 
rate-limiting step in guanine nucleotide synthesis.97 By 
contrast with other apicomplexans, cryptosporidium 
IMPDH genes are prokaryotic.98 High-throughput 
screening identifi ed selective potential inhibitors of 
cryptosporidium IMPDH by targeting the highly 
divergent cofactor binding site.99 A subsequent 
optimisation yielded single-digit nanomolar inhibitors 
with six diff erent frameworks, with greater than 10³-fold 
selectivity for Cryptosporidium IMPDH.99–103 Two com-
pounds reduced the oocyst burden in an inter leukin-12 
knockout mouse model of crypto sporidiosis. One 
compound surpassed paromomycin in a multiple-dosing 
regimen.103 Possible future directions include ensuring of 
increased drug concentrations in the gut, and 
improvement of animal models to investigate the effi  cacy 
of potential compounds.103

Drug repurposing is the novel use of approved drugs. 
Cell-based screening assays, followed by in-vitro methods 
to prioritise leads, were developed.104 Automated imaging 
and image analysis were then used to identify potential 
leads in vitro for future in-vivo studies. A screen of 
727 compounds104 yielded 16 confi rmed selective 
inhibitors, including HMG-CoA reductase inhibitors 
that target the host enzyme. Further screening with and 
without low-dose nitazoxanide for synergistic drug 
combinations is underway.

Immune response and vaccine development
Several strands of evidence suggest that development of 
a vaccine to prevent cryptosporidiosis is feasible:105 
increased susceptibility and severity of disease in 
immunocompromised hosts; adults in highly endemic 
areas are partly immune to reinfection; and human 
challenge studies show that previous infection or 
exposure leads to a higher infectious dose [ID50].106,107 
However, the protective immune responses necessary for 
an effi  cacious vaccine are incompletely understood.108 
The human immune response of clearing infection and 
preventing reinfection seems to involve separate innate 
and adaptive immune responses.

The innate immune response is crucial to provide an 
early response while activating the adaptive immune 
system.109 Mannose-binding lectin has a key role in the 
innate response. Children and HIV-infected adults with 
mannose-binding lectin defi ciency have increased 
susceptibility to cryptosporidiosis and more severe 
disease.110–112 Poly morphisms in the mannose-binding 
lectin gene were strongly associated with cryptosporidium 
infections, especially recurrent infection.110 Mannose-
binding lectin might activate complement to mediate 
parasite clearance.113 Toll-like receptors on the host cell 
surface trigger key responses to the organism. C parvum 
infection increases production of antimicrobial peptides 
(LL-37 and human β-defensin 2).114,115 Results of in-vitro 
and in-vivo studies show that knockout of TLR/MyD88 
genes results in reduced production of defensins and 
greater parasite burden.116 Results from in-vivo studies 
showed the presence of exosomes in the gut lumen, and 
exosomes carrying antimicrobial peptides from the 
epithelial surface help eliminate cryptosporidium.117 
MicroRNAs (miRNAs) have an important role in post-
transcriptional regulation and modulation of the innate 
immune response to cryptosporidium.118–121 For example, 
variation in miRNA expression has shown an association 
with changes in C parvum burden.121,122

Natural killer cells contribute to clearance of infection 
in some murine models. In mice, interferon γ is crucial 
for both the innate and acquired immune responses.123 
By contrast, human infection in naive hosts is associated 
with production of interleukin 15, which can activate 
natural killer cells to clear infection in vitro.124,125 In other 
models, macrophages seem important for the innate 
host response.126,127 The CD154-CD40 ligand receptor pair 
also has a key role in clearance of infections. Severe, 
chronic infection with biliary involvement is common in 
human hyper-IgM syndrome, associated with mutations 
in CD40 ligand.128

CD4 cells are crucial for the acquired immune response 
in both human beings and animals.108 In a longitudinal 
cohort, children who became infected with cryptosporidium 
were more likely to carry the HLA class II DQB1*0301 
allele (which presents antigen to CD4 cells) and the HLA 
class I B*15 allele (which presents antigen to CD8 cells) 
than were children who were not infected.129 In patients 
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with AIDS, the risk and severity of infection are associated 
with the CD4 cell count. Interferon γ is associated with 
acquired immunity in human infection, and interferon γ 
knockout mice have increased susceptibility to infection.130 
Interferon treatment reduces susceptibility to infection in 
cell lines, but not in primary epithelial cells131—CD8 cells 
assist in clearance of human infection.132

The role of humoral immunity in protection from 
cryptosporidiosis is unclear.108 In murine models, 
hyperimmune globulin controlled infection, but 
elimination of β cells had no signifi cant eff ect.108 Secretory 
IgA has not correlated with protection in healthy volunteers 
or patients with AIDS.108 By contrast, high concentrations 
of specifi c antibody were associated with short duration of 
illness in children in Bangladesh.15 Similarly, crypto-
sporidium antibody in breast milk was associated with 
immune-protection of breast-feeding infants.133 The 
antibody to the parasite surface antigen gp15/17 was 
associated with protection against reinfection;134 however, 
this antibody could also be a marker for a stronger cellular 
immune response. Thus no clear surrogate marker of 
protective immunity exists in cryptosporidiosis.

Several antigens have been explored for use in a 
vaccine. Results of studies in gnotobiotic pigs showed 
incomplete cross-protection between C parvum and 
C hominis.135 Similarly, results of cohort studies of 
children in low-resource countries showed frequent re-
infections.29 Reinfections are more likely to be by 
diff erent species and subtypes of cryptosporidium, but 
cases also exist of reinfection with the same subtypes.

Several antigens are being developed as vaccine 
candidates.105 For example, gp60 (also called gp40/15) is a 
polyprotein cleaved by a parasite serine proteinase into 
two surface proteins—gp15 and gp40, the latter is variable 
and used for speciation and subtyping of strains. Both 
gp15 and gp40 can stimulate interferon γ production by 
peripheral blood mononuclear cells of those previously 
infected.136 Among children in Bangladesh, IgA antibody 
to gp15 was not species specifi c, and was associated with 
shorter duration of illness.137 Vaccines based on gp15 
alone or in combination with other antigens are in 
development.138

A recombinant DNA vaccine consisting of a second 
15 kDa antigen termed Cp15 was immunogenic, and 
immunisation of pregnant goats protected off spring.139–143 
Studies have expressed this antigen in attenuated 
Salmonella, recombinant vaccinia, and DNA vectors. 
Vaccination with Cp15 in a Salmonella vector protected 
mice from infection, but the eff ect was not signifi cantly 
greater than with the vector alone.142

Results of a study in Bangladesh also showed that 
patients with infection had greater serum IgG, IgM, and 
IgA to Cp23 than did healthy patients, and the responses 
again were conserved across several subtypes and 
associated with shorter disease.144 Studies in animals 
indicate that Cp23 plasmids can promote activation of both 
antibody and CD4 concentration, with reduced parasitic 

burden, and long-term immunity with parasitic 
challenge.145 Other vaccine vectors include DNA, 
Lactobacillus, and Salmonella expressing Cp23.146 Other 
antigens being explored for vaccine use include P2 antigen, 
profi lin, Cryptosporidium apyrase, Muc4, and Muc5.143,147,148

Discussion
Growing evidence shows a high global burden of 
cryptosporidiosis, especially among children and people 
who are immunocompromised or malnourished. Data 
that we highlight in this Review emphasise the 
underappreciated role of cryptosporidium as an important 
childhood diarrhoeal pathogen. Moreover, results of the 
Global Enteric Multicentre Study24 showed the association 
between cryptosporidium infection and subacute 
mortality. More detailed studies are needed to elucidate 
the mechanisms of injury and the resultant health eff ects 
of cryptosporidium infection. Further longitudinal studies 
that use advanced molecular methods are crucial to 
characterise the pathogenesis of infection, host, and 
environmental factors in susceptibility, immune response, 
and clinical outcomes. Better characterisation is needed of 
worldwide variations and eff ect in community-based 
settings. The eff ects of diff erent Cryptosporidium genotypes 
on disease, growth, and development are poorly 
understood and need to be better defi ned. Better methods 
to defi ne genotypes are needed to enhance understanding 
of parasite strains. Finally, although asymptomatic 
cryptosporidium has been associated with poor growth in 
single-site studies, well designed longitudinal studies are 
needed to improve our understanding of the role and 
adverse eff ects of asymptomatic infections on growth and 
development.

Diagnosis of cryptosporidium infection at the point of 
care in low-resource settings is a challenge. How to 
interpret multiple enteropathogens in a child with 
diarrhoea is unclear.62,149 Microscopy and antigen 
detection assays are useful for clinical diagnosis at the 
genus level. Species diff erentiation and subtyping are 
important for outbreak investigations, epidemiology, 
burden assessment, and risk-factor and transmission 
studies, and might ultimately enable refi ned clinical 
diagnosis. Species and subtype information is not 
necessary for selection of clinical care and therapeutic 
options, but might need to be taken into account in drug 
investigations and clinical trials. Novel stool diagnostics, 
serodiagnostics, and biomarkers for cryptosporidium 
disease could enable more accurate identifi cation of 
active cryptosporidiosis than do present methods, which 
could be used for accurate case ascertainment, and 
therapeutic or vaccine trials.

Many obstacles exist to the development of drugs for 
cryptosporidiosis, including diffi  culty in propagation of 
these organisms in vitro. Novel in-vitro methods could 
enable propagation and might also improve in-vitro 
screening for novel treatments and vaccines.150 Animal 
models for drug assessments are poorly standardised, 
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and the target responses that correlate with effi  cacy in 
people are poorly characterised. Gnotobiotic piglets and 
immunosuppressed gerbils are the only animal models 
available for C hominis, although neither has been widely 
adopted. Whereas C parvum can be propagated in calves 
and lambs, cross-strain contamination has been a 
problem. Most in-vivo screening has been done in 
immunosuppressed rodents, however developments 
include a malnourished mouse model and natural 
murine infection with Cryptosporidium tyzzeri. Animal 
models need to be better standardised for pharmacological 
and effi  cacy studies and for comparison with results 
from studies in people.

The availability of several genome sequences draws 
attention to many potential targets for chemotherapy. 
Genetic manipulation could provide useful strategies for 
target prioritisation, but no methods are available. 
Funding to support development of molecular methods 
could enable development of more eff ective drugs. 
Incentives are needed to convince the pharmaceutical 
industry that a market for new therapeutics exists. 
Because people at highest risk of severe sequelae (eg, 
malnourished children) live in low-resource settings, 
government and non-governmental organisation support 
will be necessary for drug development and 
implementation of widespread treatment. In addition to 

development of novel drugs, a focus on delivery and 
fi nancing is necessary.

Although there is cause for optimism about the potential 
development of a vaccine to prevent cryptosporidiosis, 
major barriers include poor understanding of the human 
protective immune response—including which antigens 
are crucial, which responses are associated with protective 
immunity, and which delivery routes are optimum. These 
obstacles could be overcome by a well funded vaccine 
development programme with clear benchmarks for 
success.

Conclusion
Despite advances in our understanding of the genetics 
and immunology of cryptosporidium, several important 
knowledge gaps and challenges exist. The panel lists the 
key messages of this Review. Diagnostic tests each have 
their limitations in cost, performance, diff erentiation of 
clinical signifi cance, and assessment of co-infections 
with other pathogens. New methods need to be 
developed to improve interpretation of results in the 
setting of multiple infections, relevance of species 
subtypes, and in surveillance studies. In identifi cation of 
novel or repurposed therapeutics, more effi  cient use of 
genomic databases, improved culture methods, and 
development of standardised assays is necessary to 
screen potential targets. We also need to optimise animal 
models for in-vivo studies that can better replicate 
human disease. Vaccines have the potential to reduce 
the signifi cant burden of disease, but the extent and 
types of immunity necessary, and the methods by which 
to administer and induce protective immunity are 
unclear. Ultimately, progress in cryptosporidium 
research on diagnostic and therapeutic product 
development will need greater appreciation of the public 
health eff ect of this disease, with commitment from 
funding bodies to establish mechanisms to support this 
crucial work.
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